Skip to main content
Log in

Synthesis and Molecular Docking Study of Arylsulfanyl Pyrazolylpyrazoline Derivatives as Antitubercular Agents

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

New arylsulfanyl pyrazolylpyrazoline derivatives were synthesized via a facile protocol, and their structure was confirmed by FT-IR, 1H and 13C NMR, and mass spectra. Some of the synthesized compounds exhibited remarkable in vitro antitubercular activity. Molecular docking study provided well-clustered solutions to the mode of binding and affinity of these molecules to the active site of MTB enoyl–acyl carrier protein reductase (InhA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Vergelli, C., Cilibrizzi, A., Crocetti, L., Graziano, A., Piaz, V.D., Wan, B., Wang, Y., Franzblau, S., and Giovannoni, M.P., Drug Dev. Res., 2013, vol. 74, p. 162. https://doi.org/10.1002/ddr.21057

    Article  CAS  Google Scholar 

  2. Johnson, R., Streicher, E.M., Louw, G.E., Warren, R.M., Van Helden, P.D., and Victor, T., Curr. Issues Mol. Biol., 2006, vol. 8, no. 2, p. 97. https://doi.org/10.21775/cimb.008.097

    Article  CAS  PubMed  Google Scholar 

  3. Lienhardt, C., Vernon, A., and Raviglione, M.C., Curr. Opin. Pulm. Med., 2010, vol. 16, no. 3, p. 186. https://doi.org/10.1097/MCP.0b013e328337580c

    Article  CAS  PubMed  Google Scholar 

  4. Sankar, M.M., Singh, J., Diana, S.C., and Singh, S., Tuberculosis, 2013, vol. 93, no. 1, p. 75. https://doi.org/10.1016/j.tube.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Global Tuberculosis Report 2019. World Health Orga­niza­tion. https://www.who.int/publications/i/item/9789241565714.AccessedSep5,2021

  6. Zhang, T., Dong, M., Zhao, J., Zhang, X., and Mei, X., J. Pestic. Sci., 2019, vol. 44, no. 3, p. 181. https://doi.org/10.1584/jpestics.D19-028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mishra, V.K., Mishra, M., Kashaw, V., and Kashaw, S.K., Bioorg. Med. Chem., 2017, vol. 25, no. 6, p. 1949. https://doi.org/10.1016/j.bmc.2017.02.025

    Article  CAS  PubMed  Google Scholar 

  8. Kumar, G., Tanwar, O., Kumar, J., Akhter, M., Sharma, S., Pillai, C.R., Alam, M.M., and Zama, M.S., Eur. J. Med. Chem., 2018, vol. 149, p. 139. https://doi.org/10.1016/j.ejmech.2018.01.082

    Article  CAS  PubMed  Google Scholar 

  9. Acharya, B.N., Saraswat, D., Tiwari, M., Shrivas­tava, A.K., Ghorpade, R., Bapna, S., and Kaushik, M.P., Eur. J. Med. Chem., 2010, vol. 45, no. 2, p. 430. https://doi.org/10.1016/j.ejmech.2009.10.023

    Article  CAS  PubMed  Google Scholar 

  10. Matiadis, D. and Sagnou, M.A., Int. J. Mol. Sci., 2020, vol. 21, no. 15, article no. 5507. https://doi.org/10.3390/ijms21155507

  11. Özdemir, A., Altintop, M.D., Kaplancıklı, Z.A., Turan-Zitouni, G., Karaca, H., and Tunalı, Y., Arch. Pharm. (Weinheim), 2013, vol. 346, no. 6, p. 463. https://doi.org/10.1002/ardp.201200479

    Article  CAS  Google Scholar 

  12. Ismail, A.H., Abdula, A.M., Tomi, I.H.R., AlDaraji, A.H.R., and Baqi, Y., Med. Chem., 2021, vol. 17, no. 5, p. 462. https://doi.org/10.2174/1573406415666191107121757

    Article  CAS  PubMed  Google Scholar 

  13. Evranos Aksöz, B., Gürpinar, S.S., and Eryilmaz, M., Turk. J. Pharm. Sci., 2020, vol. 17, no. 5, p. 500. https://doi.org/10.4274/tjps.galenos.2019.42650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lokesh, B.V.S., Prasad, Y.R., and Shaik, A.B., Infect. Disord.: Drug Targets, 2019, vol. 19, no. 3, p. 310. https://doi.org/10.2174/1871526519666181217120626

    Article  CAS  Google Scholar 

  15. Jayaprakash, V., Sinha, B.N., Ucar, G., and Ercan, A., Bioorg. Med. Chem. Lett., 2008, vol. 18, no. 24, p. 6362. https://doi.org/10.1016/j.bmcl.2008.10.084

    Article  CAS  PubMed  Google Scholar 

  16. Ali, M.A., Yar, M.S., Kumar, M., and Pandian, G.S., Nat. Prod. Res., 2007, vol. 21, no. 7, p. 575. https://doi.org/10.1080/14786410701369367

    Article  CAS  PubMed  Google Scholar 

  17. Wong, K.T., Osman, H., Parumasivam, T., Suprat­man, U., Che Omar, M.T., and Azmi, M.N., Molecules, 2021, vol. 26, no. 7, article no. 2081. https://doi.org/10.3390/molecules26072081

  18. Li, Q.S., Shen, B.N., Zhang, Z., Luo, S., and Ruan, B.F., Curr. Med. Chem., 2021, vol. 28, no. 5, p. 940. https://doi.org/10.2174/0929867327666200306120151

    Article  CAS  PubMed  Google Scholar 

  19. Song, Y., Feng, S., Feng, J., Dong, J., Yang, K., Liu, Z., and Qiao, X., Eur. J. Med. Chem., 2020, vol. 200, article ID 112459. https://doi.org/10.1016/j.ejmech.2020.112459

  20. Xu, C.-J. and Shi, Y.-Q., J. Chem. Crystallogr., 2011, vol. 41, p. 1816. https://doi.org/10.1007/s10870-011-0178-4

    Article  CAS  Google Scholar 

  21. Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., and Mainz, D.T., J. Med. Chem., 2006, vol. 49, no. 21, p. 6177. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  22. Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., and Banks, J.L., J. Med. Chem., 2004, vol. 47, no. 7, p. 1750. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  23. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., and Shenkin, P.S., J. Med. Chem., 2004, vol. 47, no. 7, p. 1739. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  24. Vilchèze, C., Morbidoni, H.R., Weisbrod, T.R., Iwa­moto, H., Kuo, M., Sacchettini, J.C., and Jacobs, W.R., Jr., J. Bacteriol., 2000, vol. 182, no. 14, p. 4059. https://doi.org/10.1128/JB.182.14.4059-4067.2000

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the M.G. Science Institute of Science and Department of Chemistry, Ahmedabad Gujarat University for providing research facilities. The authors also thank Schrödinger Inc. for providing GLIDE software to perform the molecular docking studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Zala.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zala, M.J., Vora, J.J. & Khedkar, V.M. Synthesis and Molecular Docking Study of Arylsulfanyl Pyrazolylpyrazoline Derivatives as Antitubercular Agents. Russ J Org Chem 57, 2054–2062 (2021). https://doi.org/10.1134/S107042802112023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802112023X

Keywords:

Navigation