Skip to main content
Log in

Convenient Synthesis of Symmetrical Polyfluorinated Diphenyl Sulfides

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Thermal properties of decafluorodiphenyl disulfide in the pure state and in the presence of copper and iron metals have been studied. A procedure has been proposed for the synthesis of symmetrical poly­fluorinated diaryl sulfides from diaryl disulfides by heating with iron at high temperature. The developed procedure has been utilized to obtain 1,1′-sulfanediylbis(pentafluorobenzene), 1,1′-sulfanediylbis[3,5,6-tri­fluoro-2,4-bis(trifluoromethyl)benzene], and some other symmetrical polyfluorinated diphenyl sulfides containing a hydrogen or chlorine atom or trifluoromethyl group at the para positions of the benzene rings in up to 84% yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Kirsch, P., Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Applications, Weinheim: Wiley-VCH, 2013, 2nd ed. https://doi.org/10.1002/9783527651351

  2. Andrews, M.D., Hepworth, D., and Middleton, D.S., US Patent no. 6800652 B2, 2004; Chem. Abstr., 2004, vol. 140, no. 199209.

  3. Hashimoto, K., Cent. Nerv. Syst. Agents Med. Chem., 2007, vol. 7, p. 177. https://doi.org/10.2174/187152407781669161

    Article  CAS  Google Scholar 

  4. Smith, G., Mikkelsen, G., Eskildsen, J., and Bund­gaard, C., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 3981. https://doi.org/10.1016/j.bmcl.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  5. Ranganathan, K. and Parthiban, A., Polymer, 2018, vol. 135, p. 295. https://doi.org/10.1016/j.polymer.2017.12.031

    Article  CAS  Google Scholar 

  6. Lee, K.-S., Kim, J.-P., and Lee, J.-S., Polymer, 2010, vol. 51, p. 632. https://doi.org/10.1016/j.polymer.2009.12.020

    Article  CAS  Google Scholar 

  7. Aljoumaa, K., Qi, Y., Ding, J., and Delaire, J.A., Macromolecules, 2009, vol. 42, p. 9275. https://doi.org/10.1021/ma900930q

    Article  CAS  Google Scholar 

  8. Lee, K.-S. and Lee, J.-S., Chem. Mater., 2006, vol. 18, p. 4519. https://doi.org/10.1021/cm0610027

    Article  CAS  Google Scholar 

  9. Kim, J.-P., Kang, J.-W., Kim, J.-J., and Lee, J.-S., J. Polym. Sci., Part A: Polym. Chem., 2003, vol. 41, p. 1497. https://doi.org/10.1002/pola.10694

    Article  CAS  Google Scholar 

  10. Pagel, M.D., Daryaei, I., and Shepard, A., Int. Patent Appl. Pub. no. WO 2018169942 A1; Chem. Abstr., 2018, vol. 169, no. 394259.

  11. Unger, E.C., Meuillet, E.J., Dayei, I., and Acosta, M.F., Int. Patent Appl. Pub. no. WO 2020247315 A1; Chem. Abstr., 2020, vol. 174, no. 149258.

  12. Evans, E.D., Gates, Z.P., Sun, Z.-Y.J., Mijalis, A.J., and Pentelute, B.L., Biochemistry, 2019, vol. 58, p. 1343. https://doi.org/10.1021/acs.biochem.8b00940

    Article  CAS  PubMed  Google Scholar 

  13. Evans, E.D. and Pentelute, B.L., Org. Biomol. Chem., 2019, vol. 17, p. 1862. https://doi.org/10.1039/c8ob01678j

    Article  CAS  PubMed  Google Scholar 

  14. Lautrette, G., Touti, F., Lee, H.G., Dai, P., and Pente­lute, B.L., J. Am. Chem. Soc., 2016, vol. 138, p. 8340. https://doi.org/10.1021/jacs.6b03757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, C., Dai, P., Spokoyny, A.M., and Pentelute, B.L., Org. Lett., 2014, vol. 16, p. 3652. https://doi.org/10.1021/ol501609y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi, J.-S. and Joo, S.H., Biomol. Ther., 2020, vol. 28, p. 18. https://doi.org/10.4062/biomolther.2019.082

    Article  Google Scholar 

  17. Belf, L.J., Buxton, M. W., and Fuller, G., J. Chem. Soc., 1965, p. 3372. https://doi.org/10.1039/JR9650003372

  18. Cohen, S.C., Reddy, M.L.N., and Massey, A.G., J. Organomet. Chem., 1968, vol. 11, p. 563. https://doi.org/10.1016/0022-328X(68)80084-1

    Article  CAS  Google Scholar 

  19. Burdon, J., Coe, P.L., and Fulton, M., J. Chem. Soc., 1965, p. 2094. https://doi.org/10.1039/JR9650002094

  20. Chambers, R.D., Cunnigham, J.A., and Pyke, D.A., Tetrahedron, 1968, vol. 24, p. 2783. https://doi.org/10.1016/S0040-4020(01)82550-3

    Article  CAS  Google Scholar 

  21. Furin, G.G., Terent’eva, T.V., and Yakobson, G.G., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1972, vol. 6, p. 78; Chem. Abstr., 1973, vol. 78, no. 83964.

    Google Scholar 

  22. Yakobson, G.G., Furin, G.G., and Terent’eva, T.V., J. Org. Chem. USSR, 1974, vol. 10, p. 802; Chem. Abstr., 1974, vol. 81, no. 25234.

    Google Scholar 

  23. Hauptmann, H., Wladislav, B., Nazario, L.L., and Walter, W.F., Justus Liebigs Ann. Chem., 1952, vol. 576, p. 45. https://doi.org/10.1002/jlac.19525760106

    Article  CAS  Google Scholar 

  24. Robson, P., Stacey, M., Stephens, R., and Tatlow, J.C., J. Chem. Soc., 1960, p. 4754. https://doi.org/10.1039/JR9600004754

  25. Maksimov, A.M. and Platonov, V.E., Fluorine Notes, 1999, vol. 4, p. 5.

    Google Scholar 

  26. Plusnin, V.F., Ivanov, Yu.V., Grivin, V.P., Vorobjev, D.Y., Larionov, S.V., Maksimov, A.M., Platonov, V.E., Tkachenko, N.V., and Lemmftyinen, H., Chem. Phys. Lett., 2000, vol. 325, p. 153. https://doi.org/10.1016/S0009-2614(00)00700-4

    Article  Google Scholar 

  27. Fadeeva, V.P., Tikhova, V.D., and Nikulicheva, O.N., J. Anal. Chem., 2008, vol. 63, p. 1094. https://doi.org/10.1134/S1061934808110142

    Article  CAS  Google Scholar 

  28. FR.1.31.2011.10437. Metodika izmerenii massovoi doli sery v organicheskikh veshchestvakh metodom vizual’­nogo titrovaniya azotnokislym bariem (Procedure for Measurement of the Sulfur Weight Fraction in Organic Substances by Visual Titration with Barium Nitrate). https://fgis.gost.ru/fundmetrology/registry/16

  29. FR.1.31.2010.07509. Kolichestvennyi khimicheskii analiz organicheskikh veshchestv. Metodika vypolneniya izmerenii massovoi doli ftora v organicheskikh veshche­stvakh spektrofotometricheskim metodom (Quantitative Chemical Analysis of Organic Substances. Procedure for Measurement of the Fluorine Weight Fraction in Organic Substances by Spectrophotometric Method). https://fgis.gost.ru/fundmetrology/registry/16

  30. Peach, M.E., Int. J. Sulfur Chem., 1973, vol. 8, p. 27; Chem. Abstr., 1974, vol. 80, no. 132948.

    CAS  Google Scholar 

  31. Furin, G.G., Shchegoleva, L.N., and Yakobson, G.G., J. Org. Chem. USSR, 1975, vol. 11, p. 1275; Chem. Abstr., 1975, vol. 83, no. 78777.

    Google Scholar 

  32. Butler, P.F. and Peach, M.E., J. Fluorine Chem., 1987, vol. 35, p. 489. https://doi.org/10.1016/S0022-1139(00)81996-X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Analytical and spectral data were obtained by the staff of the Multi-Access Chemical Research Center, Siberian Branch, Russian Academy of Sciences.

Funding

This study was performed in the framework of state assignment no. 0238-2021-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Maksimov.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 12, pp. 1694–1705 https://doi.org/10.31857/S0514749221120041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikul’shin, P.V., Bredikhin, R.A., Maksimov, A.M. et al. Convenient Synthesis of Symmetrical Polyfluorinated Diphenyl Sulfides. Russ J Org Chem 57, 1921–1930 (2021). https://doi.org/10.1134/S1070428021120046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021120046

Keywords:

Navigation