Skip to main content
Log in

Synthesis and Spectral Properties of tert-Butyl-Substituted Triisoindodimethene and Its Boron Complexes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Heating of 4-tert-butylphthalimide with zinc(II) acetate gave a mixture of several products, from which we isolated 5(6)-tert-butyl-3-{[5(6)-tert-butyl-3-{[5(6)-tert-butyl-1-hydroxy-1-methyl-1H-isoindol-3-yl]­methylidene}-2,3-dihydro-1H-isoindol-1-ylidene]methyl}-1H-isoindol-1-one after treatment with sulfuric acid. The reaction of this compound with boron trifluoride–diethyl ether complex in the presence of triethyl­amine in o-xylene gave two boron complexes, 5(6)-tert-butyl-3-{[5(6)-tert-butyl-3-{[5(6)-tert-butyl-1-hydroxy-1-methyl-1H-isoindol-3-yl]methylidene}-2-(difluoroboryl)-2,3-dihydro-1H-isoindol-1-ylidene]methyl}-1H-isoindol-1-one and 5(6)-tert-butyl-3-{[2(3),11(12)-di-tert-butyl-7-fluoro-5-methyl-5H-5,15-(azeno)benzo[7,8][1,3,2]oxazaborino[4,3-a]isoindol-9(7H)-ylidene]methyl}-1H-isoindol-1-one, whose structure was confirmed by elemental analyses and NMR and mass spectra. The possibility of E,Z isomerism of the synthesized com­pounds was proposed. Study of their luminescence properties showed that their relative fluorescence quantum yields expectedly increased as the number of degrees of freedom of their molecules decreased. The Z/E isomer ratios of 5(6)-tert-butyl-3-{[5(6)-tert-butyl-3-{[5(6)-tert-butyl-1-hydroxy-1-methyl-1H-isoindol-3-yl]methyli­dene}-2,3-dihydro-1H-isoindol-1-ylidene]methyl}-1H-isoindol-1-one and its boron complexes were estimated by TD-DFT quantum chemical calculations of the vertical transition energies using SPW91LDA functional and def2-TZVP basis set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Molchanov, E.E., Marfin, Yu.S., Ksenofontov, A.A., and Rumyantsev, E.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, p. 13. https://doi.org/10.6060/ivkkt.20196212.6017

    Article  CAS  Google Scholar 

  2. Liang, X., Luo, H., Lan, Y., Zhu, W., Mack, J., Hlatsh­wayo, Z., Nyokong, T., and Chen, Q., Macroheterocycles, 2018, vol. 11, p. 421. https://doi.org/10.6060/mhc181005l

    Article  CAS  Google Scholar 

  3. Schmitt, A., Hinkeldey, B., Wild, M., and Jung, G., J. Fluoresc., 2009, vol. 19, p. 755. https://doi.org/10.1007/s10895-008-0446-7

    Article  CAS  PubMed  Google Scholar 

  4. Ziessel, R., Ulrich, G., and Harriman, A., New J. Chem., 2007, vol. 31, p. 496. https://doi.org/10.1039/B617972J

    Article  CAS  Google Scholar 

  5. Parhi, A.K., Kung, M.-P., Ploessl, K., and Kung, H.F., Tetrahedron Lett., 2008, vol. 49, p. 3395. https://doi.org/10.1016/j.tetlet.2008.03.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaur, N., Kaur, P., and Singh, K., Sens. Actuators, B, 2016, vol. 229, p. 499. https://doi.org/10.1016/j.snb.2016.01.134

    Article  CAS  Google Scholar 

  7. Erten-Ela, S., Yilmaz, M.D., Icli, B., Dede, Y., Icli, S., and Akkaya, E.U., Org. Lett., 2008, vol. 10, p. 3299. https://doi.org/10.1021/ol8010612

    Article  CAS  PubMed  Google Scholar 

  8. Bouit, P.-A., Kamada, K., Feneyrou, P., Berginc, G., Toupet, L., Maury, O., and Andraud, C., Adv. Mater., 2009, vol. 21, p. 1151. https://doi.org/10.1002/adma.200801778

    Article  CAS  Google Scholar 

  9. Kamkaew, A., Lim, S.H., Lee, H.B., Kiew, L.V., Chung, L.Y., and Burgess, K., Chem. Soc. Rev., 2013, vol. 42, p. 77. https://doi.org/10.1039/c2cs35216h

    Article  CAS  PubMed  Google Scholar 

  10. Chapran, M., Angioni, E., Findlay, N.J., Breig, B., Cherpak, V., Stakhira, P., Tuttle, T., Volyniuk, D., Grazulevicius, J.V., Nastishin, Y.A., Lavrentovich, O.D., and Skabara, P.J., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 4750. https://doi.org/10.1021/acsami.6b13689

    Article  CAS  PubMed  Google Scholar 

  11. Shen, Z., Röhr, H., Rurack, K., Uno, H., Spieles, M., Schulz, B., Reck, G., and Ono, N., Chem. Eur. J., 2004, vol. 10, p. 4853. https://doi.org/10.1002/chem.200400173

    Article  CAS  PubMed  Google Scholar 

  12. Meng, Q., Fronczek, F.R., and Vicente, M.G.H., New J. Chem., 2016, vol. 40, p. 5740. https://doi.org/10.1039/c5nj03324a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koptyaev, A.I., Skrelikov, N.A., Galanin, N.E., and Shaposhnikov, G.P., Russ. J. Org. Chem., 2018, vol. 54, p. 1675. https://doi.org/10.1134/S107042801811009X

    Article  CAS  Google Scholar 

  14. Koptyaev, A.I., Bazanov, M.I., and Galanin, N.E., Russ. J. Org. Chem., 2020, vol. 56, p. 788. https://doi.org/10.1134/S1070428020050103

    Article  CAS  Google Scholar 

  15. Makarova, E.A., Kopranenkov, V.N., Shevtsov, V.K., and Luk’yanets, E.A., Chem. Heterocycl. Compd., 1989, vol. 25, p. 1159. https://doi.org/10.1007/BF00470696

    Article  Google Scholar 

  16. Koptyaev, A.I., Galanin, N.E., and Shaposhnikov, G.P., Russ. J. Org. Chem., 2019, vol. 55, p. 944. https://doi.org/10.1134/S1070428019070042

    Article  CAS  Google Scholar 

  17. Slater, J.C., Phys. Rev., 1951, vol. 81, p. 385. https://doi.org/10.1103/PhysRev.81.385

    Article  CAS  Google Scholar 

  18. Perdew, J.P. and Wang, Y., Phys. Rev. B, 1992, vol. 45, p. 13244. https://doi.org/10.1103/PhysRevB.45.13244

    Article  CAS  Google Scholar 

  19. Schafer, A., Huber, C. and Ahlrichs, R., J. Chem. Phys., 1994, vol. 100, p. 5829. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  20. Granovsky, A.A., Firefly, V. 8.2.0. http://classic.chem.msu.su/gran/gamess/index.html

  21. Andrienko, G.A., Chemcraft, V. 1.8. http://www.chemcraftprog.com

  22. Brouwer, A.M., Pure Appl. Chem., 2011, vol. 83, p. 2213. https://doi.org/10.1351/PAC-REP-10-09-31

    Article  CAS  Google Scholar 

  23. Kim, J.B., Leonard, J.J., and Longo, F.R., J. Am. Chem. Soc., 1972, vol. 94, p. 3986. https://doi.org/10.1021/ja00766a056

    Article  CAS  PubMed  Google Scholar 

  24. Cao, L., Chen, S., Wei, D., Liu, Y., Fu, L., Yu, G., Liu, H., Liu, X., and Wu, D., J. Mater. Chem., 2010, vol. 20, p. 2305. https://doi.org/10.1039/B922958B

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the facilities of the joint research equipment center at the Ivanovo State University of Chemistry and Technology.

Funding

This study was performed in the framework of state assignment (project no. FZZW-2020-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Galanin.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 10, pp. 1420–1428 https://doi.org/10.31857/S0514749221100074.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptyaev, A.I., Rumyantseva, T.A., Tyurin, D.V. et al. Synthesis and Spectral Properties of tert-Butyl-Substituted Triisoindodimethene and Its Boron Complexes. Russ J Org Chem 57, 1614–1620 (2021). https://doi.org/10.1134/S1070428021100079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021100079

Keywords:

Navigation