Skip to main content
Log in

Synthesis, Characterization, Antimicrobial Activity Screening, and Molecular Docking Study of Pyrimidine Carbonitrile Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The present work describes the synthesis of 4-amino-6-(2-benzylidenehydrazinyl)-pyrimidine-5-carbonitrile derivatives, 4-amino-6-[(2-phenylethyl)amino]pyrimidine-5-carbonitrile, and 4-amino-6-(piperidin-1-yl)pyrimidine-5-carbonitrile. The compounds were characterized by FT-IR and 1H and 13C NMR spectroscopy and mass spectrometry. All the compounds were evaluated for in vitro antimicrobial activity against different bacterial and fungal strains. The minimum inhibitory concentrations (MICs) of all the compounds were validated. 4-Amino-6-[2-(3,4-dimethoxybenzylidene)hydrazinyl]pyrimidine-5-carbonitrile and 4-amino-6-(piperidin-1-yl)pyrimidine-5-carbonitrile, which have the lowest MIC values were selected for cell leakage analysis and bacterial growth curve study. It was found that both the compounds have potential to induce bacterial cell membrane rupture and disintegration. Field emission scanning electron microscopic analysis confirmed the effect of the selected compounds on the morphology of both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The mechanism of interaction between the drug and the target protein of S. aureus and E. coli was studied by molecular docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dasari, S.R., Tondepu, S., Vadali, L.R., and Seelam, N., Synth. Commun., 2020, vol. 50, p. 2950. https://doi.org/10.1080/00397911.2020.1787449

    Article  CAS  Google Scholar 

  2. Tolba, M.S., Ahmed, M., El-Dean, A.M.K., Hassanien, R., and Farouk, M., J. Heterocycl. Chem., 2017, vol. 66. https://doi.org/10.1002/jhet.3056

  3. Abu-Hashem, A.A. and Youssef, M.M., Molecules, 2011, vol. 16, p. 1956. https://doi.org/10.3390/molecules16031956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salem, M.S. and Errayes, A.O., J. Chem. Res., 2016, vol. 40, p. 299. https://doi.org/10.3184/174751916X14605482579576

    Article  CAS  Google Scholar 

  5. Ramiz, M.M.M., El-Sayed, W.A., Hagag, E., and Abdel-Rahman, A.A.H., J. Heterocycl. Chem., 2011, vol. 48, p. 1028. https://doi.org/10.1002/jhet.686

    Article  CAS  Google Scholar 

  6. Bai, S., Liu, S., Zhu, Y., and Wu, Q., Tetrahedron Lett., 2018, vol. 59, p. 3179. https://doi.org/10.1016/j.tetlet.2018.07.020

    Article  CAS  Google Scholar 

  7. Parveen, H., Hayat, F., Mukhtar, S., Salahuddin, A., Khan, A., Islam, F., and Azam, A., Eur. J. Med. Chem., 2011, vol. 46, p. 4669. https://doi.org/10.1016/j.ejmech.2011.05.055

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim, D.A. and El-Metwally, A.M., Eur. J. Med. Chem., 2010, vol. 45, p. 1158. https://doi.org/10.1016/j.ejmech.2009.12.026

    Article  CAS  PubMed  Google Scholar 

  9. Desai, N.C., Trivedi, A.R., Vaghani, H.V., Somani, H.C., and Bhatt, K.A., Med. Chem. Res., 2016, vol. 25, p. 329. https://doi.org/10.1007/s00044-015-1485-7

    Article  CAS  Google Scholar 

  10. Kassab, A.E. and Gedawy, E.M., Eur. J. Med. Chem. 2013, vol. 63, p. 224. https://doi.org/10.1016/j.ejmech.2013.02.011

  11. Al-Issa, S.A., Saudi. Pharm. J., 2013, vol. 21, p. 305. https://doi.org/10.1016/j.jsps.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  12. Ghorab, M.M. and Alsaid, M.S., Biomed. Sci., 2016, vol. 27, p. 110.

    CAS  Google Scholar 

  13. Barakat, A., Soliman, S.M., Al-Majid, A.M., Lotfy, G., Ghabbour, H.A., Fun, H.-K., Yousuf, S., Choudhary, M.I., and Wadood, A., J. Mol. Struct., 2015, vol. 1098, p. 365. https://doi.org/10.1016/j.molstru.2015.06.037

    Article  CAS  Google Scholar 

  14. Hassan, A.S., Mady, M.F., Awad, H.M., and Hafez, T.S., Chin. Chem. Lett., 2017, vol. 28, p. 388. https://doi.org/10.1016/j.cclet.2016.10.022

    Article  CAS  Google Scholar 

  15. Fatahala, S.S., Mahgub, S., Taha, H., and Hameed, R.H.A-E., J. Enzyme Inhib. Med. Chem., 2018, vol. 33, p. 809. https://doi.org/10.1080/14756366.2018.1461854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Majeed, J. and Shaharyar, M., J. Enzyme Inhib. Med. Chem., 2011, vol. 26, p. 819. https://doi.org/10.3109/14756366.2011.557022

    Article  CAS  PubMed  Google Scholar 

  17. Sharma, V., Chitranshi, N., and Agarwal, A.K., Int. J. Med. Chem., 2014, vol. 2014, Article ID 202784. https://doi.org/10.1155/2014/202784

  18. Ashok, D., Kumar, R.S., Mohan Gandhi, D., and Jayashree, A., Russ. J. Gen. Chem., 2016, vol. 86, p. 1396. https://doi.org/10.1134/S1070363216060268

    Article  CAS  Google Scholar 

  19. Desai, V., Desai, C.M., and Patel, D., J. Institut. Chemists, 2005, vol. 11, p. 104.

    Google Scholar 

  20. Oztürk, H., OzkirimLi, E., and Özgür, A., PLoS One, 2015. https://doi.org/10.1371/journal.pone.0117874

  21. Heo, L., Park, H., and Seok, C., Nucleic Acids Res., 2013, vol. 41, p. W384. https://doi.org/10.1093/nar/gkt458

  22. Laskowski, R.A., Macarthur, M.W., Moss, D.S., and Thornton, J.M., J. Appl. Crystallogr., 1993, vol. 26, p. 283. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  23. Trott, O. and Olson, A.J. J., Comput. Chem., 2010, vol. 31, p. 1.

    Article  Google Scholar 

  24. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R., J. Chem. Inform., 2011, vol. 3, p. 1. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  25. Laskowski, R.A. and Swindells, M.B., J. Chem. Inf. Model., 2011, vol. 51, p. 2778. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  26. Sauvage, E., Duez, C., Herman, R., Kerff, F., Petrella, S., Anderson, J.W., Adediran, S.A., Pratt, R.F., Frиre, J.M., and Charlier, P., J. Mol. Biol., 2007, vol. 371, p. 528. https://doi.org/10.1016/j.jmb.2007.05.071

    Article  CAS  PubMed  Google Scholar 

  27. Klebe, G., Drug Design, 2013, p. 61. https://doi.org/10.1007/978-3-642-17907-5-4

  28. Radhika, B., Shraddha, K.N., and Begum, N.S., IUCrData, 2020, vol. 5, x200385. https://doi.org/10.1107/S2414314620003855

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Zeiss Microscopy Customer Center, Carl Zeiss India (Bangalore), for providing the FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Shahina Begum.

Ethics declarations

The authors declare no conflict of interest

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, R., Begum, N.S. Synthesis, Characterization, Antimicrobial Activity Screening, and Molecular Docking Study of Pyrimidine Carbonitrile Derivatives. Russ J Org Chem 57, 1352–1360 (2021). https://doi.org/10.1134/S1070428021080169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021080169

Keywords:

Navigation