Skip to main content
Log in

3-(Methoxycarbonyl)thiophene Thiourea Derivatives as Potential Potent Bacterial Acetyl-CoA Carboxylase Inhibitors

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Novel thiourea derivatives containing a 3-(methoxycarbonyl)thiophene pharmacophore were synthesized and tested for activity against Gram-positive (Salmonella typhi and Klebsiella pneumonia) and Gram-negative (Micrococcus luteus and Staphylococcus aureus) bacterial strains and fungal strains (Aspergillus niger and Fusarium oxysporum), as well as the binding energies of the synthesized compounds to the bacterial acetyl-CoA carboxylase were determined. The pharmacokinetic characteristics (ADMEt) of the synthesized compounds were calculated. According to both the in vitro and in silico results, the highest activity against all the strains and the highest binding efficiency to the bacterial acetyl-CoA carboxylase is characteristic methyl 2-[3-(4-ethylbenzyl)thioureido]thiophene-3-carboxylate. The calculated pharmacokinetic characteristics showed that all the synthesized compounds are safe to administer orally. It was concluded that the 3-(methoxycarbonyl)thiophene thiourea derivatives can act as potent inhibitors of bacterial acetyl-CoA carboxylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Klevens, R.M., Melissa, A., and Morrison, J.N., JAMA, 2007, vol. 298, p. 1763. https://doi.org/10.1001/jama.298.15.1763

    Article  CAS  Google Scholar 

  2. Barbara, E. and Murray, M.D., New England J. Med., 2000, vol. 342, p. 710. https://doi.org/10.1056/NEJM200003093421007

    Article  Google Scholar 

  3. Shing, J.C., Choi, J.W., and Chapman, R., Cancer Bio. Ther., 2014, vol. 15, p. 895. https://doi.org/10.4161/cbt.28881

    Article  CAS  Google Scholar 

  4. Kocyigit-Kaymakcioglu, B., Celen, A.Q., Tabanca, Z., Ali, A., Khan, S.I., Khan, I.S., and Wedge, D.E., Molecules, 2013, vol. 18, p. 3563. https://doi.org/10.3390/molecules18033562

    Article  CAS  Google Scholar 

  5. Saturnino, C., Auria, M.D., and Paesano, N., Il Farmaco, 2003, vol. 58, p. 823. https://doi.org/10.1016/S0014-827X(03)00139-3

    Article  CAS  PubMed  Google Scholar 

  6. Venkatesh, P. and Pandeya, S.N., Int. J. ChemTech Res., 2009, vol. 1, p. 733.

    CAS  Google Scholar 

  7. Küçükgüzel, İ., Tatar, E., Küçükgüzel, Ş.G., Rollas, S., and De Clercq, E., Eur. J. Med. Chem., 2008, vol. 43, p. 381. https://doi.org/10.1016/j.ejmech.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  8. Stefanska, J., Nowicka, G., Struga, M., Szulczyk, D., Koziol, A.E., Augustynowicz-Kopec, E., Napiorkowska, A., Bielenica, A., Filipowski, W., Filipowska, A., Drzewiecka, A., Giliberti, G., Madeddu, S., Boi, S., La Colla, P., and Sanna, G., Chem. Pharm. Bull. (Tokyo), 2015, vol. 63, p. 225. https://doi.org/10.1248/cpb.c14-00837

    Article  CAS  Google Scholar 

  9. Wan Zullkiplee, W.S.H., Abd Halim, A.N., Ngaini, Z., Mohd, M.A., and Ariff, H., Phosphorus Sulfur Silicon Relat. Elem., 2014, vol. 189, p. 832. https://doi.org/10.1080/10426507.2013.858250

    Article  CAS  Google Scholar 

  10. Bielenica, A., Stefańska, J., Stȩpień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M., and Struga, M., Eur. J. Med. Chem., 2015, vol. 101, p. 111. https://doi.org/10.1016/j.ejmech.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  11. Bhowruth, V., Brown, A.K., Reynolds, R.C., Coxon, G.D., Mackay, S.P., Minnikin, D.E., and Besra, G.S., Bioorg. Med. Chem. Lett., 2006, vol. 16, pp. 4743–4747

    Article  CAS  Google Scholar 

  12. Nordin, N.A., Chai, T.W., Tan, B.L., Choi, C.L., Abd Halim, A.N., Hussain, H., and Ngaini, Z., Hindawi J. Chem., 2017, vol. 7. https://doi.org/10.1155/2017/2378186

  13. Arslan, H., Duran, N., Borecki, G., Ozer, C.K., and Akbey, C., Molecules, 2009, vol. 14, p. 519. https://doi.org/10.3390/molecules14010519

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bozorov, K., Li Fei, N., Zhao, J., and Haji, A., Eur. J. Med. Chem., 2017, vol. 140, p. 465. https://doi.org/10.1016/j.ejmech.2017.09.039

    Article  CAS  PubMed  Google Scholar 

  15. Puterová, Z., Krutosíková, A., and Végh, D., Arkivoc, 2010, vol. 1, p. 209. https://doi.org/10.3998/ark.5550190.0011.105

    Article  Google Scholar 

  16. Huang, X., Liu, J., Ren, J., Wang, T., Chen, W., and Zeng, B., Tetrahedron, 2011, vol. 67, p. 6202. https://doi.org/10.1016/j.tet.2011.06.061

  17. Arora, M., Saravanan, J., Mohan, S., and Bhattacharjee, S., Int. J. Pharm. Pharm. Sci., 2013, vol. 5, p. 315–333.

    CAS  Google Scholar 

  18. Khan, K.M., Nullah, Z., Lodhi, M.A., Jalil, S., and Choudhary, M.I., J. Enzyme Inhib. Med. Chem., 2006, vol. 21, p. 139. https://doi.org/10.1080/14756360500480418

    Article  CAS  PubMed  Google Scholar 

  19. Fortes, A.C., Almeida, A.A.C., Mendonça, Freitas, R.M., Soares Sobrinho, J.L., and Soares, M.F.L.R., Neurochem. Res., 2013, vol. 38, p. 726. https://doi.org/10.1007/s11064-013-0970-y

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues, K.A.F., Dias, C.N.S., Neris, P.L.N., Rocha, J.C., Scotti, M.T., and Scotti, L., Eur. J. Med. Chem., 2015, vol. 106, pp. 1. https://doi.org/10.1016/j.ejmech.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  21. Duffy, J.L., Kirk, B.A., Konteatis, Z., Campbell, E.L., Liang, R., and Brady, E.J., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 1401. https://doi.org/10.1016/j.bmcl.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Abo-Salem, H.M., El-Sawy, E.R., Fathy, A., and Mandour, A.H., Egypt Pharm. J., 2014, vol. 13, p. 71. https://doi.org/10.4103/1687-4315.147064

    Article  Google Scholar 

  23. Gouda, M.A., Eldien, H.F., Girges, M.M., and Berghot, M.A., Med. Chem., 2013, vol. 3, p. 2228.

    Article  Google Scholar 

  24. Romagnoli, R., Baraldi, P.G., Carrion, M.D., LopezCara, C., Preti, D., and Fruttarolo, F., J. Med. Chem., 2007, vol. 50, p. 2273. https://doi.org/10.1021/jm070443e

    Article  CAS  PubMed  Google Scholar 

  25. Chaitanya, K.P., Naik, A.B., Madhu, T.L., and Nagulu, M., Int. J. Pharm. Biol. Sci., 2017, vol. 7, p. 1.

    Article  Google Scholar 

  26. Kumar, K.N., Amperayani, K.R., Ummdi, V.R.S., and Parimi, U.D., Asian J. Chem., 2019, vol. 31.

  27. Dewal, M.D., Wani, A.S., Vidaillac, C., Oupicky, D., Rybak, M.J., and Firestine, S.M., Eur. J. Med. Chem., 2012, vol. 51, p. 145. https://doi.org/10.1016/j.ejmech.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mabkhot, Y.N., Alatibi, F., El-Sayed, N.N.E., Al-Showiman, S., Kheder, N.A., Wadood, A., Rauf, A., Bawazeer, S., and Ben Hadda, T., Molecules, 2016, vol. 21, p. 222. https://doi.org/10.3390/molecules21081036

    Article  CAS  PubMed Central  Google Scholar 

  29. Bourbeau, M.P. and Bartberger, M.D., J. Med. Chem., 2015, vol. 58, p. 525.

    Article  CAS  Google Scholar 

  30. Silvers, M.A., Robertson, G.T., Taylor, C.M., and Waldrop, G.L., J. Med. Chem., 2014, vol. 57, p. 8947.

    Article  CAS  Google Scholar 

  31. Freiberg, C., Pohlmann, J., Nell, P.G., Endermann, R., Schuhmacher, J., Newton, B., Otteneder, M., Lampe, T., Häbich, D., and Ziegelbauer, K., Antimicrob. Agents Chemother., 2006, vol. 50, p. 2707.

    Article  CAS  Google Scholar 

  32. Bonev, B., Hooper, J., and Parisot, J., J. Antimicrob. Chemother., 2008, vol. 61, p. 1295. https://doi.org/10.1093/jac/dkn090

    Article  CAS  PubMed  Google Scholar 

  33. Vikram, V., Penumutchu, S.R., Vankayala, R., Thangudu, S., Rao Amperayani, K., and Parimi, U., J. Chem. Sci., 2020, vol. 132, p. 126. https://doi.org/10.1007/s12039-020-01834-w

    Article  CAS  Google Scholar 

  34. Atlas, R.M., Handbook of Microbiological Media. London: CRC Press, 2004, p. 1226.

  35. Lipinski, C.A., Drug Discov. Today: Technol., 2004, vol. 1, p. 337. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Vikram or P. Umadevi.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikram, V., Amperayani, K.R. & Umadevi, P. 3-(Methoxycarbonyl)thiophene Thiourea Derivatives as Potential Potent Bacterial Acetyl-CoA Carboxylase Inhibitors. Russ J Org Chem 57, 1336–1345 (2021). https://doi.org/10.1134/S1070428021080145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021080145

Keywords:

Navigation