Skip to main content
Log in

Cascade Transformations of [1,2,3]Triazolo[1,5-a]pyridines as Convenient Precursors of Diazo Compounds and Metal Carbenes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The review is devoted to the use of [1,2,3]triazolo[1,5-a]pyridines as precursors of tautomeric 2-(diazomethyl)pyridines. This methodology represents a convenient tool for the synthesis of various types of nitrogen-containing heterocycles. Both noncatalytic transformations and cascade reactions involving metal carbenes, which have been intensively studied in recent years, are considered. Major approaches to the preparation of [1,2,3]triazolo[1,5-a]pyridines are also summarized in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Ford, A., Miel, H., Ring, A., Slattery, C.N., Maguire, A.R., and McKervey, M.A., Chem. Rev., 2015, vol. 115, p. 9981. https://doi.org/10.1021/acs.chemrev.5b00121

    Article  CAS  PubMed  Google Scholar 

  2. Doyle, M.P., Duffy, R., Ratnikov, M., and Zhou, L., Chem. Rev., 2010, vol. 110, p. 704. https://doi.org/10.1021/cr900239n

    Article  CAS  PubMed  Google Scholar 

  3. Gillingham, D. and Fei, N., Chem. Soc. Rev., 2013, vol. 42, p. 4918. https://doi.org/10.1039/C3CS35496B

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Z. and Wang, J., Tetrahedron, 2008, vol. 64, p. 6577. https://doi.org/10.1016/j.tet.2008.04.074

    Article  CAS  Google Scholar 

  5. Davies, H.M.L. and Alford, J.S., Chem. Soc. Rev., 2014, vol. 43, p. 5151. https://doi.org/10.1039/C4CS00072B

    Article  CAS  PubMed  Google Scholar 

  6. Anbarasan, P., Yadagiri, D., and Rajasekar, S., Synthesis, 2014, vol. 46, p. 3004. https://doi.org/10.1055/s-0034-1379303

    Article  CAS  Google Scholar 

  7. Bakulev, V., Dehaen, W., and Beryozkina, T., Top. Heterocycl. Chem., 2015, vol. 40, p. 1. https://doi.org/10.1007/7081_2014_131

    Article  CAS  Google Scholar 

  8. Jiang, Y., Sun, R., Tang, X.-Y., and Shi, M., Chem. Eur. J., 2016, vol. 22, p. 17910. https://doi.org/10.1002/chem.201601703

    Article  CAS  PubMed  Google Scholar 

  9. Li, Y., Yang, H., and Zhai, H., Chem. Eur. J., 2018, vol. 24, p. 12757. https://doi.org/10.1002/chem.201800689

    Article  CAS  PubMed  Google Scholar 

  10. Li, W. and Zhang, J., Chem. Eur. J., 2020, vol. 26, p. 11931. https://doi.org/10.1002/chem.202000674

    Article  CAS  PubMed  Google Scholar 

  11. LʼAbbe, G., Van Stappen, P., and Toppet, S., Tetrahedron, 1985, vol. 41, p. 4621. https://doi.org/10.1016/S0040-4020(01)82357-7

    Article  Google Scholar 

  12. LʼAbbé, G., Luyten, I., Vercauteren, K., and Dehaen, W., Bull. Soc. Chim. Belg., 1993, vol. 102, p. 683. https://doi.org/10.1002/bscb.19931021010

    Article  Google Scholar 

  13. Kotovshchikov, Y.N., Latyshev, G.V., Navasardyan, M.A., Erzunov, D.A., Beletskaya, I.P., and Lukashev, N.V., Org. Lett., 2018, vol. 20, p. 4467. https://doi.org/10.1021/acs.orglett.8b01755

    Article  CAS  PubMed  Google Scholar 

  14. Kotovshchikov, Y.N., Latyshev, G.V., Kirillova, E.A., Moskalenko, U.D., Lukashev, N.V., and Beletskaya, I.P., J. Org. Chem., 2020, vol. 85, p. 9015. https://doi.org/10.1021/acs.joc.0c00931

    Article  CAS  PubMed  Google Scholar 

  15. Gevondian, G.A., Kotovshchikov, Y.N., Latyshev, G.V., Lukashev, N.V., and Beletskaya, I.P., J. Org. Chem., 2021, vol. 86, p. 5639. https://doi.org/10.1021/acs.joc.1c00115

    Article  CAS  PubMed  Google Scholar 

  16. Yadagiri, D., Rivas, M., and Gevorgyan, V., J. Org. Chem., 2020, vol. 85, p. 11030. https://doi.org/10.1021/acs.joc.0c01652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filippov, I.P., Titov, G.D., and Rostovskii, N.V., Synthesis, 2020, vol. 52, p. 3564. https://doi.org/10.1055/s-0040-1707254

    Article  CAS  Google Scholar 

  18. Abarca, B., Ballesteros, R., and Elmasnaouy, M., Tetrahedron, 1998, vol. 54, p. 15287. https://doi.org/10.1016/S0040-4020(98)00955-7

    Article  CAS  Google Scholar 

  19. Zimmerman, H.E. and Ignatchenko, A., J. Org. Chem., 1999, vol. 64, p. 6635. https://doi.org/10.1021/jo990323h

    Article  CAS  PubMed  Google Scholar 

  20. Frick, J.J., Ly, C.Q., and Schwarz, J.B., Synthesis, 2015, vol. 47, p. 2593. https://doi.org/10.1055/s-0034-1379932

    Article  CAS  Google Scholar 

  21. Mine, S., Kawamura, S., and Nakagawa, K., Synth. Commun., 1976, vol. 6, p. 69. https://doi.org/10.1080/00397917608072611

    Article  Google Scholar 

  22. Prakash, O., Gujral, H.K., Rani, N., and Singh, S.P., Synth. Commun., 2000, vol. 30, p. 417. https://doi.org/10.1080/00397910008087337

    Article  CAS  Google Scholar 

  23. Hirayama, T., Ueda, S., Okada, T., Tsurue, N., Okuda, K., and Nagasawa, H., Chem. Eur. J., 2014, vol. 20, p. 4156. https://doi.org/10.1002/chem.201302997

    Article  CAS  PubMed  Google Scholar 

  24. Xu, P. and Xu, H.-C., ChemElectroChem, 2019, vol. 6, p. 4177. https://doi.org/10.1002/celc.201900080

    Article  CAS  Google Scholar 

  25. Boyer, J. and Goebel, N., J. Org. Chem., 1960, vol. 25, p. 304. https://doi.org/10.1021/jo01072a634

    Article  CAS  Google Scholar 

  26. Shang, Z.-H., Zhang, Z.-X., Weng, W.-Z., Wang, Y.-F., Cheng, T.-W., Zhang, Q.-Y., Song, L.-Q., Shao, T.-Q., Liu, K.-X., and Zhu, Y.-P., Adv. Synth. Catal., 2021, vol. 363, p. 490. https://doi.org/10.1002/adsc.202001052

    Article  Google Scholar 

  27. Regitz, M., Angew. Chem. Int. Ed., 1965, vol. 4, p. 431. https://doi.org/10.1002/anie.196504311

    Article  Google Scholar 

  28. Cai, Y.-M., Zhang, X., An, C., Yang, Y.-F., Liu, W., Gao, W.-X., Huang, X.-B., Zhou, Y.-B., Liu, M.-C., and Wu, H.-Y., Org. Chem. Front., 2019, vol. 6, p. 1481. https://doi.org/10.1039/C9QO00071B

    Article  CAS  Google Scholar 

  29. Abarca-González, B., J. Enzyme Inhib. Med. Chem., 2002, vol. 17, p. 359. https://doi.org/10.1080/1475636021000005622

    Article  PubMed  Google Scholar 

  30. Jones, G., Adv. Heterocycl. Chem., 2002, vol. 83, p. 1. https://doi.org/10.1016/S0065-2725(02)83003-3

    Article  CAS  Google Scholar 

  31. Jones, G. and Abarca, B., Adv. Heterocycl. Chem., 2010, vol. 100, p. 195. https://doi.org/10.1016/S0065-2725(10)10007-5

    Article  CAS  Google Scholar 

  32. Jones, G. and Sliskovic, D.R., Tetrahedron Lett., 1980, vol. 21, p. 4529. https://doi.org/10.1016/S0040-4039(00)74542-4

    Article  CAS  Google Scholar 

  33. Blanco, F., Alkorta, I., Elguero, J., Cruz, V., Abarca, B., and Ballesteros, R., Tetrahedron, 2008, vol. 64, p. 11150. https://doi.org/10.1016/j.tet.2008.09.064

    Article  CAS  Google Scholar 

  34. Abarca, B., Ballesteros, R., Mojarred, F., Jones, G., and Mouat, D.J., J. Chem. Soc. Perkin 1, 1987, p. 1865. https://doi.org/10.1039/P19870001865

  35. Bentabed-Ababsa, G., Blanco, F., Derdour, A., Mongin, F., Trécourt, F., Quéguiner, G., Ballesteros, R., and Abarca, B., J. Org. Chem., 2009, vol. 74, p. 163. https://doi.org/10.1021/jo801675h

    Article  CAS  PubMed  Google Scholar 

  36. Jones, G., Mouat, D.J., Pitman, M.A., Lunt, E., and Lythgoe, D.J., Tetrahedron, 1995, vol. 51, p. 10969. https://doi.org/10.1016/0040-4020(95)00652-O

    Article  CAS  Google Scholar 

  37. Chiassai, L., Adam, R., Drechslerová, M., Ballesteros, R., and Abarca, B., J. Fluor. Chem., 2014, vol. 164, p. 44. https://doi.org/10.1016/j.jfluchem.2014.05.001

    Article  CAS  Google Scholar 

  38. Adam, R., Abarca, B., and Ballesteros, R., Synthesis, 2017, vol. 49, p. 5059. https://doi.org/10.1055/s-0036-1588525

    Article  CAS  Google Scholar 

  39. Abarca, B., Ballesteros, R., Blanco, F., Bouillon, A., Collot, V., Domı́nguez, J.-R., Lancelot, J.-C., and Rault, S., Tetrahedron, 2004, vol. 60, p. 4887. https://doi.org/10.1016/j.tet.2004.03.083

    Article  CAS  Google Scholar 

  40. Abarca, B., Aucejo, R., Ballesteros, R., Blanco, F., and García-España, E., Tetrahedron Lett., 2006, vol. 47, p. 8101. https://doi.org/10.1016/j.tetlet.2006.09.051

    Article  CAS  Google Scholar 

  41. Liu, S., Sawicki, J., and Driver, T.G., Org. Lett., 2012, vol. 14, p. 3744. https://doi.org/10.1021/ol301606y

    Article  CAS  PubMed  Google Scholar 

  42. Rawat, D., Kumar, R., and Adimurthy, S., Eur. J. Org. Chem., 2019, vol. 2019, p. 7874. https://doi.org/10.1002/ejoc.201901748

    Article  CAS  Google Scholar 

  43. Tennant, G. and Vevers, R.J.S., J. Chem. Soc., Chem. Commun., 1974, p. 671b. https://doi.org/10.1039/C3974000671B

  44. L’abbé, G., Godts, F., and Toppet, S., J. Chem. Soc., Chem. Commun., 1985, p. 589. https://doi.org/10.1039/C39850000589

  45. Aylward, N., Winter, H.-W., Eckhardt, U., and Wentrup, C., J. Org. Chem., 2016, vol. 81, p. 667. https://doi.org/10.1021/acs.joc.5b02639

    Article  CAS  PubMed  Google Scholar 

  46. Abarca, B., Alkorta, I., Ballesteros, R., Blanco, F., Chadlaoui, M., Elguero, J., and Mojarrad, F., Org. Biomol. Chem., 2005, vol. 3, p. 3905. https://doi.org/10.1039/B510535H

    Article  CAS  PubMed  Google Scholar 

  47. Boyer, J.H. and Wolford, L.T., J. Am. Chem. Soc., 1958, vol. 80, p. 2741. https://doi.org/10.1021/ja01544a040

    Article  CAS  Google Scholar 

  48. Jones, G., Mouat, D.J., and Tonkinson, D.J., J. Chem. Soc. Perkin 1, 1985, p. 2719. https://doi.org/10.1039/P19850002719

  49. Wentrup, C., Tetrahedron, 1974, vol. 30, p. 1301. https://doi.org/10.1016/S0040-4020(01)97303-X

    Article  CAS  Google Scholar 

  50. Wentrup, C., Helv. Chim. Acta, 1978, vol. 61, p. 1755. https://doi.org/10.1002/hlca.19780610522

    Article  CAS  Google Scholar 

  51. Adam, R., Alom, S., Abarca, B., and Ballesteros, R., Tetrahedron, 2016, vol. 72, p. 8436. https://doi.org/10.1016/j.tet.2016.11.006

    Article  CAS  Google Scholar 

  52. Kuhn, A., Plüg, C., and Wentrup, C., J. Am. Chem. Soc., 2000, vol. 122, p. 1945. https://doi.org/10.1021/ja993859t

    Article  CAS  Google Scholar 

  53. Plüg, C., Kuhn, A., and Wentrup, C., J. Chem. Soc. Perkin 1, 2002, p. 1366. https://doi.org/10.1039/B202523J

  54. Dong, C., Wang, X., Pei, Z., and Shen, R., Org. Lett., 2019, vol. 21, p. 4148. https://doi.org/10.1021/acs.orglett.9b01334

    Article  CAS  PubMed  Google Scholar 

  55. Kuzaj, M., Lüerssen, H., and Wentrup, C., Angew. Chem. Int. Ed., 1986, vol. 25, p. 480. https://doi.org/10.1002/anie.198604801

    Article  Google Scholar 

  56. Tomioka, H., Ichikawa, N., and Komatsu, K., J. Am. Chem. Soc., 1993, vol. 115, p. 8621. https://doi.org/10.1021/ja00072a015

    Article  CAS  Google Scholar 

  57. Zhang, Z., Yadagiri, D., and Gevorgyan, V., Chem. Sci., 2019, vol. 10, p. 8399. https://doi.org/10.1039/C9SC02448D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chuprakov, S., Hwang, F.W., and Gevorgyan, V., Angew. Chem. Int. Ed., 2007, vol. 46, p. 4757. https://doi.org/10.1002/anie.200700804

    Article  CAS  Google Scholar 

  59. Chuprakov, S. and Gevorgyan, V., Org. Lett., 2007, vol. 9, p. 4463. https://doi.org/10.1021/ol702084f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, C., Zhou, Y., and Bao, X., J. Org. Chem., 2017, vol. 82, p. 3751. https://doi.org/10.1021/acs.joc.7b00204

    Article  CAS  PubMed  Google Scholar 

  61. Kim, H., Kim, S., Kim, J., Son, J.-Y., Baek, Y., Um, K., and Lee, P.H., Org. Lett., 2017, vol. 19, p. 5677. https://doi.org/10.1021/acs.orglett.7b02826

    Article  CAS  PubMed  Google Scholar 

  62. Shi, Y., Gulevich, A.V., and Gevorgyan, V., Angew. Chem. Int. Ed., 2014, vol. 53, p. 14191. https://doi.org/10.1002/anie.201408335

    Article  CAS  Google Scholar 

  63. Lv, X., Yang, H., Shi, T., Xing, D., Xu, X., and Hu, W., Adv. Synth. Catal., 2019, vol. 361, p. 1265. https://doi.org/10.1002/adsc.201801497

    Article  CAS  Google Scholar 

  64. Dequina, H.J., Eshon, J., Raskopf, W.T., Fernández, I., and Schomaker, J.M., Org. Lett., 2020, vol. 22, p. 3637. https://doi.org/10.1021/acs.orglett.0c01124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Filippov, I.P., Novikov, M.S., Khlebnikov, A.F., and Rostovskii, N.V., Eur. J. Org. Chem., 2020, vol. 2020, p. 2904. https://doi.org/10.1002/ejoc.202000210

    Article  CAS  Google Scholar 

  66. Xu, G., Shao, Y., Tang, S., Chen, Q., and Sun, J., Org. Lett., 2020, vol. 22, p. 9303. https://doi.org/10.1021/acs.orglett.0c03533

    Article  CAS  PubMed  Google Scholar 

  67. Kim, J.H., Gensch, T., Zhao, D., Stegemann, L., Strassert, C.A., and Glorius, F., Angew. Chem. Int. Ed., 2015, vol. 54, p. 10975. https://doi.org/10.1002/anie.201504757

    Article  CAS  Google Scholar 

  68. Zhao, D., Kim, J.H., Stegemann, L., Strassert, C.A., and Glorius, F., Angew. Chem. Int. Ed., 2015, vol. 54, p. 4508. https://doi.org/10.1002/anie.201411994

    Article  CAS  Google Scholar 

  69. Jeon, W.H., Son, J.-Y., Kim, J.E., and Lee, P.H., Org. Lett., 2016, vol. 18, p. 3498. https://doi.org/10.1021/acs.orglett.6b01750

    Article  CAS  PubMed  Google Scholar 

  70. Dong, Y., Chen, J., Cui, Y., Bao, L., and Xu, H., Org. Lett., 2020, vol. 22, p. 772. https://doi.org/10.1021/acs.orglett.9b03904

    Article  CAS  PubMed  Google Scholar 

  71. Xu, H.-B., Zhu, Y.-Y., and Dong, L., J. Org. Chem., 2019, vol. 84, p. 16286. https://doi.org/10.1021/acs.joc.9b02468

    Article  CAS  PubMed  Google Scholar 

  72. Helan, V., Gulevich, A.V., and Gevorgyan, V., Chem. Sci., 2015, vol. 6, p. 1928. https://doi.org/10.1039/C4SC03358B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi, Y. and Gevorgyan, V., Chem. Commun., 2015, vol. 51, p. 17166. https://doi.org/10.1039/C5CC07598J

    Article  CAS  Google Scholar 

  74. Joshi, A., Mohan, D.C., and Adimurthy, S., Org. Lett., 2016, vol. 18, p. 464. https://doi.org/10.1021/acs.orglett.5b03509

    Article  CAS  PubMed  Google Scholar 

  75. Shen, R., Dong, C., Yang, J., and Han, L., Adv. Synth. Catal., 2018, vol. 360, p. 4252. https://doi.org/10.1002/adsc.201800909

    Article  CAS  Google Scholar 

  76. Moon, Y., Kwon, S., Kang, D., Im, H., and Hong, S., Adv. Synth. Catal., 2016, vol. 358, p. 958. https://doi.org/10.1002/adsc.201500967

    Article  CAS  Google Scholar 

  77. AbuSalim, D.I., Hong, S., and Baik, M.-H., Chem. Asian J., 2018, vol. 13, p. 2505. https://doi.org/10.1002/asia.201800498

    Article  CAS  PubMed  Google Scholar 

  78. Joshi, A., Semwal, R., Suresh, E., and Adimurthy, S., Chem. Commun., 2019, vol. 55, p. 10888. https://doi.org/10.1039/C9CC05953A

    Article  CAS  Google Scholar 

  79. Xin, L., Wan, W., Yu, Y., Wan, Q., Ma, L., and Huang, X., ACS Catal., 2021, vol. 11, p. 1570. https://doi.org/10.1021/acscatal.0c05156

    Article  CAS  Google Scholar 

  80. Roy, S., Das, S.K., and Chattopadhyay, B., Angew. Chem. Int. Ed., 2018, vol. 57, p. 2238. https://doi.org/10.1002/anie.201711209

    Article  CAS  Google Scholar 

  81. Dzik, W.I., Xu, X., Zhang, X.P., Reek, J.N.H., and de Bruin, B., J. Am. Chem. Soc., 2010, vol. 132, p. 10891. https://doi.org/10.1021/ja103768r

    Article  CAS  PubMed  Google Scholar 

  82. Lu, H., Dzik, W.I., Xu, X., Wojtas, L., de Bruin, B., Zhang, X.P., J. Am. Chem. Soc., 2011, vol. 133, p. 8518. https://doi.org/10.1021/ja203434c

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Z. and Gevorgyan, V., Org. Lett., 2020, vol. 22, p. 8500. https://doi.org/10.1021/acs.orglett.0c03099

    Article  CAS  PubMed  Google Scholar 

  84. Rawat, D., Ravi, C., Joshi, A., Suresh, E., Jana, K., Ganguly, B., and Adimurthy, S., Org. Lett., 2019, vol. 21, p. 2043. https://doi.org/10.1021/acs.orglett.9b00180

    Article  CAS  PubMed  Google Scholar 

  85. Wang, H., Cai, S., Ai, W., Xu, X., Li, B., and Wang, B., Org. Lett., 2020, vol. 22, p. 7255. https://doi.org/10.1021/acs.orglett.0c02586

    Article  CAS  PubMed  Google Scholar 

  86. Joshi, A., Mohan, D.C., and Adimurthy, S., J. Org. Chem., 2016, vol. 81, p. 9461. https://doi.org/10.1021/acs.joc.6b01742

    Article  CAS  PubMed  Google Scholar 

  87. Opsomer, T., Van Hoof, M., D’Angelo, A., and Dehaen, W., Org. Lett., 2020, vol. 22, p. 3596. https://doi.org/10.1021/acs.orglett.0c01069

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, G.-T., Zhang, J., Xu, Y.-J., and Dong, L., Eur. J. Org. Chem., 2018, vol. 2018, p. 4197. https://doi.org/10.1002/ejoc.201800764

    Article  CAS  Google Scholar 

  89. Lamaa, D., Lin, H.-P., Bzeih, T., Retailleau, P., Alami, M., and Hamze, A., Eur. J. Org. Chem., 2019, vol. 2019, p. 2602. https://doi.org/10.1002/ejoc.201801803

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 19-73-00184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Kotovshchikov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 8, pp. 1084–1119 https://doi.org/10.31857/S0514749221080024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotovshchikov, Y.N., Voloshkin, V.A., Latyshev, G.V. et al. Cascade Transformations of [1,2,3]Triazolo[1,5-a]pyridines as Convenient Precursors of Diazo Compounds and Metal Carbenes. Russ J Org Chem 57, 1212–1244 (2021). https://doi.org/10.1134/S1070428021080029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021080029

Keywords:

Navigation