Skip to main content
Log in

Synthesis of Diamantane Derivatives in Nitric Acid Media

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

1-Mono- and 1,4-difunctional diamantane derivatives were synthesized by the reaction of diamantane with nitric acid or a HNO3–AcOH mixture followed by the addition of nitrogen-containing nucleophiles. Methyl N-(diamantan-1-yl)carbamothioate was synthesized from diamantan-1-ol and methyl thiocyanate in sulfuric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Schwertfeger, H., Fokin, A.A., and Schreiner, P.R., Angew. Chem., Int. Ed., 2008, vol. 47, p. 1022. https://doi.org/10.1002/anie.200701684

    Article  CAS  Google Scholar 

  2. Nekhaev, A.I., Bagrii, E.I., and Maximov, A.L., Petroleum Chem., 2011, vol. 51, p. 86. https://doi.org/10.1134/S0965544111020095

    Article  CAS  Google Scholar 

  3. Gunawan, M.A., Hierso, J.-C., Poinsot, D., Fokin, A.A., Fokina, N.A., Tkachenko, B.A., and Schreiner, P.R., New J. Chem., 2014, vol. 38, p. 28. https://doi.org/10.1039/c3nj00535f

    Article  CAS  Google Scholar 

  4. Yeung, K.-W., Dong, Y., Chen, L., Tang, C.-Y., Law, W.-C., and Tsui, G.C.-P., Nanotechnol. Rev., 2020, vol. 9, p. 650. https://doi.org/10.1515/ntrev-2020-0051

    Article  CAS  Google Scholar 

  5. de Araujo, P.L.B., Mansoori, G.A., and de Araujo, E.S., Int. J. Oil, Gas Coal Technol., 2012, vol. 5, p. 316. https://doi.org/10.1504/IJOGCT.2012.048981

    Article  Google Scholar 

  6. Marchand, A.P., Science, 2003, vol. 299, p. 52. https://doi.org/10.1126/science.1079630

    Article  CAS  PubMed  Google Scholar 

  7. Dahl, J.E.P., Liu, S., and Carlson, R.M.K., Science, 2003, vol. 299, p. 96. https://doi.org/10.1126/science.1078239

    Article  CAS  PubMed  Google Scholar 

  8. Dahl, J.E.P., Moldowan, J.M., Peakman, T.M., Clardy, J.C., Lobkovsky, E., Olmstead, M.M., May, P.W., Davis, T.J., Steeds, J.W., Peters, K.E., Pepper, A., Ekuan, A., and Carlson, R.M.K., Angew. Chem., Int. Ed., 2003, vol. 42, p. 2040. https://doi.org/10.1002/anie.200250794

    Article  CAS  Google Scholar 

  9. Zhou, Y., Brittain, A.D., Kong, D., Xiao, M., Meng, Y., and Sun, L., J. Mater. Chem. C, 2015, vol. 3, p. 6947. https://doi.org/10.1039/C5TC01377A

    Article  CAS  Google Scholar 

  10. Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stockdale, T.P. and Williams, C.M., Chem. Soc. Rev., 2015, vol. 44, p. 7737. https://doi.org/10.1039/C4CS00477A

    Article  CAS  PubMed  Google Scholar 

  12. Spilovska, K., Zemek, F., Korabecny, J., Nepovimova, E., Soukup, O., Windisch, M., and Kuca, K., Curr. Med. Chem., 2016, vol. 23, p. 3245. https://doi.org/10.2174/0929867323666160525114026

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y., Dahl, J., Carlson, R., and Liang, H., Carbon, 2015, vol. 86, p. 132. https://doi.org/10.1016/j.carbon.2015.01.017

    Article  CAS  Google Scholar 

  14. Codony, S., Valverde, E., Leiva, R., Brea, J., Loza, M.I., Morisseau, C., Hammock, B.D., and Vázquez, S., Bioorg. Med. Chem., 2019, vol. 27, p. 115078. https://doi.org/10.1016/j.bmc.2019.115078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, P.-S., Wang, J.-J., Wang, Y.-H., Jan, W.-C., Cheng, S.-P., and Hsu, Y.-C., Oncology Lett., 2016, vol. 11, p. 3551. https://doi.org/10.3892/ol.2016.4430

    Article  CAS  Google Scholar 

  16. Gushiken, T., Ujiie, S., Ubukata, T., and Yokoyama, Y., Bull. Chem. Soc. Jpn., 2011, vol. 84, p. 269. https://doi.org/10.1246/bcsj.20100259

    Article  CAS  Google Scholar 

  17. Carrington, E.J., McAnally, C.A., Fletcher, A.J., Thompson, S.P., Warren, M., and Brammer, L., Nature Chem., 2017, vol. 9, p. 882. https://doi.org/10.1038/NCHEM.2747

    Article  CAS  Google Scholar 

  18. Nakanishi, Y., Omachi, H., Fokina, N.A., Schreiner, P.R., Becker, J., Dahl, J.E.P., Carlson, R.M.K., and Shinohara, H., Chem. Commun., 2018, vol. 54, p. 3823. https://doi.org/10.1039/c7cc09832d

    Article  CAS  Google Scholar 

  19. Gunawan, M.A., Moncea, O., Poinsot, D., Keskes, M., Domenichini, B., Heintz, O., Chassagnon, R., Herbst, F., Carlson, R.M.K., Dahl, J.E.P., Fokin, A.A., Schreiner, P.R., and Hierso, J.-C., Adv. Funct. Mater., 2018, p. 1705786. https://doi.org/10.1002/adfm.201705786

  20. Gao, H.-Y., Šekutor, M., Liu, L., Timmer, A., Schreyer, H., Mönig, H., Amirjalayer, S., Fokina, N.A., Studer, A., Schreiner, P.R., and Fuchs, H., J. Am. Chem. Soc., 2019, vol. 141, p. 315. https://doi.org/10.1021/jacs.8b10067

    Article  CAS  PubMed  Google Scholar 

  21. Moncea, O., Casanova-Chafer, J., Poinsot, D., Ochmann, L., Mboyi, C.D., Nasrallah, H.O., Llobet, E., Makni, I., El Atrous, M., Brandes, S., Rousselin, Y., Domenichini, B., Nuns, N., Fokin, A.A., Schreiner, P.R., and Hierso, J.-C., Angew. Chem,. Int. Ed., 2019, vol. 58, p. 9933. https://doi.org/10.1002/anie.201903089

    Article  CAS  Google Scholar 

  22. Narasimha, K.T., Ge, C., Fabbri, J.D., Clay, W., Tkachenko, B.A., Fokin, A.A., Schreiner, P.R., Dahl, J.E., Carlson, R.M.K., Shen, Z.X., and Melosh, N.A., Nature Nanotechnol., 2016, vol. 11, p. 267. https://doi.org/10.1038/NNANO.2015.277

    Article  CAS  Google Scholar 

  23. Sigwalt, D., Šekutor, M., Cao, L., Zavalij, P.Y., Hostas, J., Ajani, H., Hobza, P., Mlinaric-Majerski, K., Glaser, R., and Isaacs, L., J. Am. Chem. Soc., 2017, vol. 139, p. 3249. https://doi.org/10.1021/jacs.7b00056

    Article  CAS  PubMed  Google Scholar 

  24. Šekutor, M., Molčanov, K., Cao, L., Isaacs, L., Glaser, R., and Mlinarić-Majerski, K., Eur. J. Org. Chem., 2014, vol. 2014, p. 2533. https://doi.org/10.1002/ejoc.201301844

    Article  CAS  Google Scholar 

  25. Lopatina, Y.Yu., Vorobyova, V.I., Fokin, A.A., Schreiner, P.R., Marchenko, A.A., and Zhuk, T.S., J. Phys. Chem. C, 2019, vol. 123, p. 27477. https://doi.org/10.1021/acs.jpcc.9b06625

    Article  CAS  Google Scholar 

  26. Vodicka, L., Isaev, S.D., Burkhard, J., and Janku, J., Collect. Czech. Chem. Commun., 1984, vol. 491, p. 1900. https://doi.org/10.1135/cccc19841900

    Article  Google Scholar 

  27. Fokina, N.A., Tkachenko, B.A., Merz, A., Serafin, M., Dahl, J.E.P., Carlson, R.M.K., Fokin, A.A., and Schreiner, P.R., Eur. J. Org. Chem., 2007, vol. 2007, p. 4738. https://doi.org/10.1002/ejoc.200700378

    Article  CAS  Google Scholar 

  28. Gunchenko, P.A., Li, J., Liu, B., Chen, H., Pashenko, A.E., Bakhonsky, V.V., Zhuk, T.S., and Fokin, A.A., Mol. Catal., 2018, vol. 447, p. 72. https://doi.org/10.1016/j.mcat.2017.12.017

    Article  CAS  Google Scholar 

  29. Khusnutdinov, R.I., Shchadneva, N.A., Khisamova, L.F., Mayakova, Yu.Yu., and Dzhemilev, U.M., Russ. J. Org. Chem., 2011, vol. 47, p. 1898. https://doi.org/10.1134/S1070428011120220

    Article  CAS  Google Scholar 

  30. Khusnutdinov, R.I., Shchadneva, N.A., Mayakova, Yu.Yu., Yulamanova, A.A., Khazipova, A.N., and Kutepov, B.I., Russ. J. Gen. Chem., 2018, vol. 88, p. 658. https://doi.org/10.1134/S1070363218040084

    Article  CAS  Google Scholar 

  31. Fokin, A.A., Tkachenko, B.A., Gunchenko, P.A., Gusev, D.V., and Schreiner, P.R., Chem. Eur. J., 2005, vol. 11, p. 7091. https://doi.org/10.1002/chem.200500031

    Article  CAS  PubMed  Google Scholar 

  32. Berndt, J.-P., Erb, F.R., Ochmann, L., Beppler, J., and Schreiner, P.R., Synlett, 2019, vol. 30, p. 493. https://doi.org/10.1055/s-0037-1610403

    Article  CAS  Google Scholar 

  33. Olah, G.A., Ramaiah, P., Rao, C.B., Sandford, G., Golam, R., Trivedi, N.J., and Olah, J.A., J. Am. Chem. Soc., 1993, vol. 115, p. 7246. https://doi.org/10.1142/9789812791405_0127

    Article  CAS  Google Scholar 

  34. Gunchenko, P.A., Novikovskii, A.A., Byk, M.V., and Fokin, A.A., Russ. J. Org. Chem., 2014, vol. 50, p. 1749. https://doi.org/10.1134/S1070428014120057

    Article  CAS  Google Scholar 

  35. Vodicka, L., Janku, J., and Burkhard, J., Collect. Czech. Chem. Commun., 1983, vol. 48, p. 1162. https://doi.org/10.1135/cccc19831162

    Article  CAS  Google Scholar 

  36. Fokina, N.A., Tkachenko, B.A., Dahl, J.E.P., Carlson, R.M.K., Fokin, A.A., and Schreiner, P.R., Synthesis, 2012, vol. 44, p. 259. https://doi.org/10.1055/s-0031-1289617

    Article  CAS  Google Scholar 

  37. Davis, M.C. and Nissan, D.A., Synth. Commun., 2006, vol. 36, p. 2113. https://doi.org/10.1080/00397910600636600

    Article  CAS  Google Scholar 

  38. Gunchenko, P.A., Chernish, L.V., Tikhonchuk, E.Yu., Becker, J., Schreiner, P.R., and Fokin, A.A., J. Org. Pharm. Chem., 2020, vol. 18, p. 16. https://doi.org/10.24959/ophcj.20.199807

    Article  CAS  Google Scholar 

  39. Fokin, A.A., Yurchenko, R.I., Tkachenko, B.A., Fokina, N.A., Gunawan, M.A., Poinsot, D., Dahl, J.E.P., Carlson, R.M.K., Serafin, M., Cattey, H., Hierso, J.-C., and Schreiner, P.R., J. Org. Chem., 2014, vol. 79, p. 5369. https://doi.org/10.1021/jo500793m

    Article  CAS  PubMed  Google Scholar 

  40. Moncea, O., Gunawan, M.A., Poinsot, D., Cattey, H., Becker, J., Yurchenko, R.I., Butova, E.D., Hausmann, H., Šekutor, M., Fokin, A.A., Hierso, J.-C., and Schreiner, P.R., J. Org. Chem., 2016, vol. 81, p. 8759. https://doi.org/10.1021/acs.joc.6b01219

    Article  CAS  PubMed  Google Scholar 

  41. Klimochkin, Yu.N., Bagrii, E.I., Dolgopolova, T.N., and Moiseev, I.K., Russ. Chem. Bull., 1988, vol. 37, p. 757. https://doi.org/10.1007/BF01455495

    Article  Google Scholar 

  42. Klimochkin, Yu.N. and Moiseev, I.K., Zh. Org. Khim., 1988, vol. 24, p. 557.

    CAS  Google Scholar 

  43. Klimochkin, Yu.N., Ivleva, E.A., and Skomorokhov, M.Yu., Russ. J. Org. Chem., 2020, vol. 56, p. 1525. https://doi.org/10.1134/S1070428020090043

    Article  CAS  Google Scholar 

  44. Leonova, M.V., Skomorokhov, M.Yu., Moiseev, I.K., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2015, vol. 51, p. 1703. https://doi.org/10.1134/S1070428015120064

    Article  CAS  Google Scholar 

  45. Ivleva, E.A. and Klimochkin, Yu.N., Org. Prep. Proced. Int., 2017, vol. 49, p. 155. https://doi.org/10.1080/00304948.2017.1291004

    Article  CAS  Google Scholar 

  46. Klimochkin, Yu.N., Yudashkin, A.V., Zhilkina, E.O., Ivleva, E.A., Moiseev, I.K., and Oshis, Ya.F., Russ. J. Org. Chem., 2017, vol. 53, p. 971. https://doi.org/10.1134/S1070428017070028

    Article  CAS  Google Scholar 

  47. Ivleva, E.A., Pogulyaiko, A.V., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2018, vol. 54, p. 1294. https://doi.org/10.1134/S107042801809004X

    Article  CAS  Google Scholar 

  48. Klimochkin, Yu.N., Ivleva, E.A., and Moiseev, I.K., Russ. J. Org. Chem., 2020, vol. 56, p. 1532. https://doi.org/10.1134/S1070428020090055

    Article  CAS  Google Scholar 

  49. Moiseev, I.K., Klimochkin, Yu.N., Zemtsova, M.N., and Trakhtenberg, P.L., J. Org. Chem. USSR, 1984, vol. 20, p. 1307.

    Google Scholar 

  50. Gund, T.M., Schleyer, P.v.R., Unruh, G.D., and Gleicher, G.J., J. Org. Chem., 1974, vol. 39, p. 2995. https://doi.org/10.1021/jo00934a011

    Article  Google Scholar 

  51. Klimochkin, Yu.N., Abramov, O.V., Moiseev, I.K., Vologin, M.F., Leonova, M.V., and Bagrii, E.I., Neftekhimiya, 2000, vol. 40, p. 454.

    CAS  Google Scholar 

  52. Duddeck, H., Hollowood, F., Karim, A., and McKervey, A., J. Chem. Soc. Perkin 2, 1979, vol. 3, p. 360. https://doi.org/10.1039/P29790000360

    Article  Google Scholar 

  53. Janků, J., Burkhard, J., and Vodička, L., Z. Chem., 1981, vol. 21, p. 325. https://doi.org/10.1002/zfch.19810210905

    Article  Google Scholar 

  54. Gund, T.M., Nomura, M., and Schleyer, P.v.R., J. Org. Chem., 1974, vol. 39, p. 2987. https://doi.org/10.1021/jo00934a010

    Article  CAS  Google Scholar 

  55. Bochan, R., Merrow, R.T., and Dolah, R.W., Chem. Rev., 1955, vol. 55, p. 485. https://doi.org/10.1021/cr50003a001

    Article  Google Scholar 

  56. Klimochkin, Yu.N. and Moiseev, I.K., Zh. Org. Khim., 1987, vol. 23, p. 2025.

    CAS  Google Scholar 

  57. Cahill, P.A., Tetrahedron Lett., 1990, vol. 31, p. 5417. https://doi.org/10.1016/S0040-4039(00)97861-4

    Article  CAS  Google Scholar 

  58. Klimochkin, Yu.N., Ivleva, E.A., Serzhantova, A.S., Shiryaev, A.K., and Moiseev, I.K., Russ. J. Org. Chem., 2017, vol. 53, p. 1170. https://doi.org/10.1134/S1070428017080024

    Article  CAS  Google Scholar 

  59. Gund, T.M., Nomura, M., Williams, V.Z., and Schleyer, P.v.R., Tetrahedron Lett., 1970, vol. 56, p. 4875. https://doi.org/10.1016/S0040-4039(00)99732-6

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the “Research of Physical and Chemical Properties of Substances and Materials” Center for Collective Use, Samara State Technical University. Diamantane (1) was provided by J. Janku (University of Chemistry and Technology, Prague, Czech).

Funding

The work was financially supported by the Ministry of Education and Science of the Russian Federation in the framework of the design part of the State Order no. 0778-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivleva.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 2, pp. 219–229 https://doi.org/10.31857/S0514749221020087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimochkin, Y.N., Ivleva, E.A. & Zaborskaya, M.S. Synthesis of Diamantane Derivatives in Nitric Acid Media. Russ J Org Chem 57, 186–194 (2021). https://doi.org/10.1134/S1070428021020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021020081

Keywords:

Navigation