Skip to main content
Log in

New Synthetic Approach to Polyfluorinated Carbonates

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Transesterification of commercial titanium(IV) alkoxides with 2,2,3,3-tetrafluoropropan-1-ol, followed by in situ transesterification of mixed titanium(IV) alkoxides thus formed with diphenyl carbonate, afforded alkyl 2,2,3,3-tetrafluoropropyl carbonates and bis(2,2,3,3-tetrafluoropropyl) carbonate in up to 60% yield. The degree of transesterification decreased in the series (i-PrO)4Ti > (EtO)4Ti > (BuO)4Ti and did not exceed 68%. The selectivity for alkyl 2,2,3,3-tetrafluoropropyl carbonates and bis(2,2,3,3-tetrafluoropropyl) carbonate was found to change depending on the composition of mixed titanium(IV) alkoxide formed in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme

Similar content being viewed by others

REFERENCES

  1. Tabanelli, T., Monti, E., Cavani, F., and Selva, M., Green Chem., 2017, vol. 19, p. 1519. https://doi.org/10.1039/C6GC03466G

    Article  CAS  Google Scholar 

  2. Politanskaya, L.V., Selivanova, G.A., Panteleeva, E.V., Tretyakov, E.V., Platonov, V.E., Nikul’shin, P.V., Vinogradov, A.S., Zonov, Ya.V., Karpov, V.M., Mezhenkova, T.V., Vasilyev, A.V., Koldobskii, A.B., Shilova, O.S., Morozova, S.M., Burgart, Ya.V., Shchegolkov, E.V., Saloutin, V.I., Sokolov, V.B., Aksinenko, A.Yu., Nenajdenko, V.G., Moskalik, M.Yu., Astakhova, V.V., Shainyan, B.A., Tabolin, A.A., Ioffe, S.L., Muzalevskiy, V.M., Balenkova, E.S., Shastin, A.V., Tyutyunov, A.A., Boiko, V.E., Igumnov, S.M., Dilman, A.D., Adonin, N.Yu., Bardin, V.V., Masoud, S.M., Vorobyeva, D.V., Osipov, S.N., Nosova, E.V., Lipunova, G.N., Charushin, V.N., Prima, D.O., Makarov, A.G., Zibarev, A.V., Trofimov, B.A., Sobenina, L.N., Belyaeva, K.V., Sosnovskikh, V.Ya., Obydennov, D.L., and Usachev, S.A., Russ. Chem. Rev., 2019, vol. 88, p. 425. https://doi.org/10.1070/RCR4871

    Article  CAS  Google Scholar 

  3. Azimi, N., Weng, W., Takoudis, C., and Zhang, Z., Electrochem. Commun., 2013, vol. 37, p. 96. https://doi.org/10.1016/j.elecom.2013.10.020

    Article  CAS  Google Scholar 

  4. Nishikawa, D., Nakajima, T., Ohzawa, Y., Koh, M., Yamauchi, A., Kagawa, M., and Aoyama, H., J. Power Sources, 2013, vol. 243, p. 573. https://doi.org/10.1016/j.jpowsour.2013.06.034

    Article  CAS  Google Scholar 

  5. Matsuda, Y., Nakajima, T., Ohzawa, Y., Koh, M., Yamauchi, A., Kagawa, M., and Aoyama, H., J. Fluorine Chem., 2011, vol. 132, p. 1174. https://doi.org/10.1016/j.jfluchem.2011.07.019

    Article  CAS  Google Scholar 

  6. Sasaki, Yu., Takehara, M., Watanabe, S., Nanbu, N., and Ue, M.,J. Fluorine Chem., 2004, vol. 125, p. 1205. https://doi.org/10.1016/j.jfluchem.2004.05.008

    Article  CAS  Google Scholar 

  7. Studnev, Yu.N., Frolovskii, V.A., Kinash, O.F., and Stolyarov, V.P., Pharm. Chem. J., 2006, vol. 40, p. 76. https://doi.org/10.1007/s11094-006-0062-2F

    Article  CAS  Google Scholar 

  8. Gorbunova, T.I., Pestov, A.V., and Zapevalov, A.Ya., Russ. J. Appl. Chem., 2018, vol. 91, p. 657. https://doi.org/10.1134/S1070427218040195

    Article  CAS  Google Scholar 

  9. Babad, H. and Zeiler, A., Chem. Rev., 1973, vol. 73, p. 75. https://doi.org/10.1021/cr60281a005

    Article  CAS  Google Scholar 

  10. Petrova, T.D., Ryabichev, A.G., Savchenko, T.I., Kolesnikova, I.V., and Platonov, V.E., Zh. Org. Khim., 1988, vol. 24, p. 1513.

    CAS  Google Scholar 

  11. Gazatullina, S.R., Sokolovskii, A.V., Germash, A.V., Zlotskii, S.S., and Rakhmankulov, D.L., Zh. Obshch. Khim., 1990, vol. 60, p. 2565.

    CAS  Google Scholar 

  12. Semenova, A.M., Pervova, M.G., Ezhikova, M.A., Kodess, M.I., Zapevalov, A.Ya., and Pestov, A.V., Russ. J. Org. Chem., 2019, vol. 55, p. 771. https://doi.org/10.1134/S0514749219060053

    Article  CAS  Google Scholar 

  13. Arico, F. and Tundo, P., Russ. Chem. Rev., 2010, vol. 79, p. 479. https://doi.org/10.1070/RC2010v079n06ABEH004113

    Article  CAS  Google Scholar 

  14. Nawaratna, G., Lacey, R., and Fernando, S.D., Catal. Sci. Technol., 2012, vol. 2, p. 364. https://doi.org/10.1039/C1CY00397F

    Article  CAS  Google Scholar 

  15. Yatluk, Y.G., Suvorov, A.L., Khrustaleva, E.A., and Chernyak, S.V.,Russ. J. Org. Chem., 2004, vol. 40, p. 769. https://doi.org/10.1023/B:RUJO.0000044537.64421.dd

    Article  CAS  Google Scholar 

  16. Kuznetsov, V.A., Pestov, A.V., Pervova, M.G., and Yatluk, Y.G.,Russ. J. Org. Chem., 2013, vol. 49, p. 1078. https://doi.org/10.1134/S1070428013070208

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The spectral and analytical data were obtained using the facilities of the Spectroscopy and Analysis of Organic Compounds joint center.

Funding

This study was performed in the framework of state task to the Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences (project nos. AAAA-A19-119012490006-1, AAAA-A19-119012290116-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pestov.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, A.M., Ezhikova, M.A., Kodess, M.I. et al. New Synthetic Approach to Polyfluorinated Carbonates. Russ J Org Chem 56, 645–648 (2020). https://doi.org/10.1134/S1070428020040120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020040120

Keywords:

Navigation