Skip to main content
Log in

Synthesis of 1,3,5-Trisubstituted Pyrazoles and Hydrazones Using Fe3O4@CeO2 Nanocomposite as an Efficient Heterogeneous Nanocatalyst

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Pyrazoles and hydrazones, as two significant kinds of potentially bioactive compounds, were produced with good to excellent yields by condensation of β-dicarbonyl compounds with hydrazines in aqueous media in the presence of Fe3O4@CeO2 nanocomposite as an efficient heterogeneous nanocatalyst. The magnetic nanocatalyst can readily be separated using an external magnet and reused at least six times without significant loss in activity. The products were characterized by IR and 1H and13C NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bahri-Laleh, N., Nekoomanesh-Haghighi, M., and Amin Mirmohammadi, S., J. Organomet. Chem., 2012, vol. 719, p. 74. https://doi.org/10.1016/j.jorganchem.2012.08.017

    Article  CAS  Google Scholar 

  2. Rahmatiyan, S., Bahri-Laleh, N., Hanifpour, A., and Nekoomanesh-Haghighi, M., Polym. Int., 2019, vol. 68, p. 94. https://doi.org/10.1002/pi.5700

    Article  CAS  Google Scholar 

  3. Climent, M.J., Corma, A., and Iborra, S., RSC Adv., 2012, vol. 2, p. 16. https://doi.org/10.1039/C1RA00807B

    Article  CAS  Google Scholar 

  4. Gad-Allah, T.A., Fujimura, K., Kato, S., Satokawa, S., and Kojima, T., J. Hazard. Mater., 2008, vol. 154, p. 572. https://doi.org/10.1016/j.jhazmat.2007.10.068

    Article  CAS  PubMed  Google Scholar 

  5. Casas, L., Roig, A., Rodrı́guez, E., Molins, E., Tejada, J., and Sort, J., J. Non-Cryst. Solids, 2001, vol. 285, p. 37. https://doi.org/10.1016/S0022-3093(01)00429-X

  6. Maleki, A., Hajizadeh, Z., and Abbasi, H., Carbon Lett., 2018, vol. 27, p. 42. https//doi.org/10.5714/CL.2018.27.042

    Google Scholar 

  7. Rostamnia, S., Alamgholiloo, H., and Jafari, M., Appl. Organomet. Chem., 2018, vol. 32, p. 4370. https://doi.org/10.1002/aoc.4370

    Article  CAS  Google Scholar 

  8. Maggio, B., Daidone, G., Raffa, D., Plescia, S., Mantione, L., Cutuli, V.M.C., Mangano, N.G., and Caruso, A., Eur. J. Med. Chem., 2001, vol. 36, p. 737. https://doi.org/10.1016/S0223-5234(01)01259-4

    Article  CAS  PubMed  Google Scholar 

  9. Choi, W.K., El-Gamal, M.I., Choi, H.S., and Baek, D., Eur. J. Med. Chem., 2011, vol. 46, p. 5754. https://doi.org/10.1016/j.ejmech.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  10. Bernardino, A.M.R., Gomez, A.O., Charret, K.S., Freitas, A.C.C., Machado, G.M.C., CantoCavalheiro, M.M., Leon, L.L., and Amaral, V.F., Eur. J. Med. Chem., 2006, vol. 41, p. 80. https://doi.org/10.1016/j.ejmech.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  11. Prakash, O., Kumar, R., and Sehrawat, R., Eur. J. Med. Chem., 2009, vol. 44, p. 1763. https://doi.org/10.1016/j.ejmech.2008.03.028

    Article  CAS  PubMed  Google Scholar 

  12. Jayanna, N.D., Vagdevi, H.M., Dharshan, J.C., Raghavendra, R., and Telkar, S.B., Med. Chem. Res., 2013, vol. 22, p. 5814. https://doi.org/10.1007/s00044-013-0565-9

    Article  CAS  Google Scholar 

  13. Cottineau, B., Toto, P., Marot, C., Pipaud, A., and Chenault, J.,Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 2105. https://doi.org/10.1016/S0960-894X(02)00380-3

    Article  CAS  PubMed  Google Scholar 

  14. Pereira, A.L., Barreiro, E.J.L., Freitas, A.C.C., Correa, C.J.C., and Gomes, L.N.L.F., J. Liq. Chromatogr., 1991, vol. 14, p. 1161. https://doi.org/10.1080/01483919108049310

    Article  CAS  Google Scholar 

  15. Martin, S.F., Pure Appl. Chem., 2009, vol. 81, p. 195. https://doi.org/10.1351/PAC-CON-08-07-03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meyer, C.D., Joiner, C.S., and Stoddart, J.F., Chem. Soc. Rev., 2007, vol. 36, p. 1705. https://doi.org/10.1039/B513441M

    Article  CAS  PubMed  Google Scholar 

  17. Gawronski, J., Wascinska, N., and Gajewy, J., Chem. Rev., 2008, vol. 108, p. 5227. https://doi.org/10.1021/cr800421c

    Article  CAS  PubMed  Google Scholar 

  18. Tehrani, K.A. and De Kimpe, N., Science of Synthesis, Padwa, A., Ed., Stuttgart: Thieme, 2004, vol. 27, p. 245.

  19. Dias, E.L., Brookhart, M., and White, P.S., J. Am. Chem. Soc., 2001, vol. 123, p. 2442. https://doi.org/10.1021/ja003608g

    Article  CAS  PubMed  Google Scholar 

  20. Dias, E.L., Brookhart, M., and White, P.S., Chem. Commun., 2001, p. 423. https://doi.org/10.1039/B007815H

  21. Zakerinasab, B., Nasseri, M.A., Hassani, H., and Samieadel, M.M.,Res. Chem. Intermed., 2016, vol. 42, p. 3169. https://doi.org/10.1007/s11164-015-2204-1

    Article  CAS  Google Scholar 

  22. Hassani, H., Nasseri, M.A., Zakerinasab, B., and Rafiee, F.,Appl. Organomet. Chem., 2016, vol. 30, no. 6, p. 408. https://doi.org/10.1002/aoc.3447

    Article  CAS  Google Scholar 

  23. Hassani, H., Zakerinasab, B., Nasseri, M.A., and Shavakandi, M.,RSC Adv., 2016, vol. 6, p. 17560. https://doi.org/10.1039/C5RA24252E

    Article  CAS  Google Scholar 

  24. Hassani, H., Zakerinasab, B., and Hossien Poor, H., Appl. Organomet. Chem., 2017, vol. 32, p. 3945. https://doi.org/10.1002/aoc.3945

    Article  CAS  Google Scholar 

  25. Hassani, H., Zakerinasab, B., and Nozarie, A., Asian J. Green Chem., 2018, vol. 2, p. 59. https://doi.org/10.22631/ajgc.2017.101572.1032

    Article  CAS  Google Scholar 

  26. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., and Deng, X.,Procedia Eng., 2012, vol. 27, p. 632. https://doi.org/10.1016/j.proeng.2011.12.498

    Article  Google Scholar 

  27. Fan, X.-W., Lei, T., Zhou, C., Meng, Q.-Y., Chen, B., Tung, C.-H., and Wu, L-Z., J. Org. Chem., 2016, vol. 81, p. 7127. https://doi.org/10.1021/acs.joc.6b00992

    Article  CAS  PubMed  Google Scholar 

  28. Zakerinasab, B., Nasseri, M.A., Hassani, H., and Samieadel, M.M.,Res. Chem. Intermed., 2016, vol. 42, p. 3169. https://doi.org/10.1007/s11164-015-2204-1

    Article  CAS  Google Scholar 

  29. Hu, J., Chen, S., Sun, Y., Yang, J., and Rao, Y., Org. Lett., 2012, vol. 14, p. 5030. https://doi.org/10.1021/ol3022353

    Article  CAS  PubMed  Google Scholar 

  30. Nakamichi, N., Kawashita, Y., and Hayashi, M., Synthesis, 2004, vol. 2004, no. 7, p. 1015. https://doi.org/10.1055/s-2004-822343

    Article  CAS  Google Scholar 

  31. Akbari, A., Org. Chem. Res., 2017, vol. 3, no. 2, p. 145. https://doi.org/10.22036/org.chem.2017.46823.1047

    Article  Google Scholar 

  32. Xiong, W., Chen, J.X., Liu, M.C., Ding, J.C., Wu, H.Y., and Su, W.K., J. Braz. Chem. Soc., 2009, vol. 20, p. 367. https://doi.org/10.1590/S0103-50532009000200023

    Article  CAS  Google Scholar 

  33. Shetty, M.R. and Samant, S.D., Synth. Commun., 2012, vol. 42, p. 1411. https://doi.org/10.1080/00397911.2010.540365

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under financial support by the Payame Noor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hassani.

Ethics declarations

The authors declare the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, H., Jahani, Z. Synthesis of 1,3,5-Trisubstituted Pyrazoles and Hydrazones Using Fe3O4@CeO2 Nanocomposite as an Efficient Heterogeneous Nanocatalyst. Russ J Org Chem 56, 485–490 (2020). https://doi.org/10.1134/S1070428020030185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020030185

Keywords:

Navigation