Skip to main content
Log in

1,8-Diazabicyclo[5.4.0]undec-7-ene-Promoted Oxidation by Atmospheric Oxygen of an Allylsilane Derived from γ-Formyl-Substituted Cyclopentene

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

(1R,4R,5S-5-{[(tert-Butyldimethylsilyl)oxy]methyl}-4-(trimethylsilyl)cyclopent-2-ene-1-carbaldehyde in a toluene–DBU–O2 medium undergoes a tandem-type isomerization/oxidation transformation to form (3S,4S,5S)-5-{[(tert-butyldimethylsilyl)oxy]methyl}-3-hydroxy-4-(trimethylsilyl)cyclopent-1-ene-1-carbaldehyde in a good yield. Possible way of formation of the product was proposed, involving the C3-oxidation of the starting allylsilane by a carbanion/enolate mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Garibyan, O.A., Ovanesyan, A.L., Makaryan, G.M., Petrosyan, A.L., and Chobanyan, Zh.A., Russ.J. Org.Chem., 2010, vol. 46, p. 406. https://doi.org/10.1134/S1070428010030188

    Article  CAS  Google Scholar 

  2. Soulere, L., Queneau, Y., and Doutheau, A., Chem. Phys.Lipids, 2007, vol. 150, p. 239. https://doi.org/10.1016/j.chemphyslip.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  3. Tolstikov, A.G., Prokopenko, O.F., Yamilov, R.Kh., and Tolstikov, G.A., Mendeleev Commun., 1991, vol. 2, p. 64. https://doi.org/10.1070/MC1991v001n02ABEH000038

    Article  Google Scholar 

  4. Yu, L. and Wang, Z., Chem. Commun., 1993, vol. 3, p. 232. https://doi.org/10.1039/C39930000232

    Article  Google Scholar 

  5. Masao, M. and Kobayashi, Y., J. Org. Chem., 2018, vol. 83, p. 3906. https://doi.org/10.1021/acs.joc.8b00256

    Article  CAS  Google Scholar 

  6. White, N.A. and Rouis, T., J. Am. Chem. Soc., 2014, vol. 136, p. 14674. https://doi.org/10.1021/ja5080739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ho, X.-H., Jung, W.-J., Shyam, P.K., and Jang, H.Y., Catal. Sci. Techol., 2014, vol. 4, p. 1914. https://doi.org/10.1039/C4CY00271G

    Article  CAS  Google Scholar 

  8. Chen, J.S. and Abeykoon, G.A., Org. Lett., 2015, vol. 134, p. 6050. https://doi.org/10.1021/acs.orglett.5b03050

    Article  CAS  Google Scholar 

  9. Mo, J., Chen, X., and Chi, Y.R., J. Am. Chem. Soc., 2012, vol. 134, p. 8810. https://doi.org/10.1021/ja303618z

    Article  CAS  PubMed  Google Scholar 

  10. Sun, M. and Salomon, R.G., J. Am. Chem. Soc., 2004, vol. 126, p. 5699. https://doi.org/10.1021/ja038756w

    Article  CAS  PubMed  Google Scholar 

  11. Gimazetdinov, A.M., Al’mukhametov, A.Z., Spirikhin, L.V., and Miftakhov, M.S., Russ. J. Org. Chem., 2017, vol. 53, p. 836. https://doi.org/10.1134/S1070428017060057

    Article  CAS  Google Scholar 

  12. Gimazetdinov, A.M., Al’mukhametov, A.Z., Spirikhin, L.V., and Miftakhov, M.S., Tetrahedron Lett., 2017, vol. 58, p. 3242. https://doi.org/10.1016/j.tetlet.2017.07.023

    Article  CAS  Google Scholar 

  13. Clennan, E.L., Tetrahedron, 2000, vol. 56, p. 9151. https://doi.org/10.1016/S0040-4020(00)00794-8

    Article  CAS  Google Scholar 

  14. Weyerstahl, P., Wahlburg, H.-C., Kaul, V.K., and Lochynski, S., Liebigs Ann. Chem., 1992, p. 279. https://doi.org/10.1002/jlac.199219920148

  15. Adam, W., Saha-Möller, C.R., and Weichold, O., Monatsh. Chem., 2000, vol. 131, p. 697. https://doi.org/10.1007/s007060070098

    Article  CAS  Google Scholar 

  16. Li, M., Chen, B., Monteiro, S., and Rustum, A.M., Tetrahedron Lett., 2009, vol. 50, p. 4575. https://doi.org/10.1016/j.tetlet.2009.05.074

    Article  CAS  Google Scholar 

  17. Sugamoto, K., Matsushita, Y.-i., Yamamoto, T., and Matsui, T., Synth. Commun., 2005, vol. 35, p. 1865. https://doi.org/10.1081/SCC-200064901

    Article  CAS  Google Scholar 

  18. Alberti, M.N. and Orfanopoulos, M., Synlett., 2010, vol. 7, p. 999. https://doi.org/10.1055/s-0029-1219790

    Article  CAS  Google Scholar 

  19. Park, S., Yang, D., Kim, K.T., and Jeon, H.B., Tetrahedron Lett., 2011, vol. 52, p. 6578. https://doi.org/10.1016/j.tetlet.2011.09.127

    Article  CAS  Google Scholar 

  20. Dussault, P.H., Eary, C.T., Lee, R.J., and Zope, U.R., J. Chem. Soc., Perkin Trans. 1, 1999, p. 2189. https://doi.org/10.1039/A901243E

  21. Sucrow, W., Chem. Ber., 1967, vol. 100, p. 259. https://doi.org/10.1002/cber.19671000130

    Article  CAS  Google Scholar 

  22. Frimer, A.A., Hameiri-Buch, J., Ripshtos, S., and Gilinsky-Sharon, P., Tetrahedron, 1986, vol. 42, p. 5693. https://doi.org/10.1016/S0040-4020(01)88175-8

    Article  CAS  Google Scholar 

  23. Coburn, C.E., Anderson, D.K., and Swenton, J.S., J. Org. Chem., 1983, vol. 48, p. 1455. https://doi.org/10.1021/jo00157a014

    Article  CAS  Google Scholar 

  24. Griesbeck, A.G., Goldfuss, B., Leven, M., and de Kiff, A., Tetrahedron Lett., 2013, vol. 54, p. 2938. https://doi.org/10.1016/j.tetlet.2013.03.099

    Article  CAS  Google Scholar 

  25. Shimozu, Y., Hirano, K., Shibata, T., Shibata, N., and Uchida, K., J. Biol. Chem., 2011, vol. 286, p. 29313. https://doi.org/10.1074/jbc.M111.255737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan, T.H. and Wang, D., Chem. Rev., 1995, vol. 95, p. 1279. https://doi.org/10.1021/cr00037a007

    Article  CAS  Google Scholar 

  27. Masse, C.E. and Panek, J.S., Chem. Rev., 1995, vol. 95, p. 1293. https://doi.org/10.1021/cr00037a008

    Article  CAS  Google Scholar 

  28. Fleming, I., Barbero, A., and Walter, D., Chem. Rev., 1997, vol. 97, p. 2063. https://doi.org/10.1021/cr941074u

    Article  CAS  PubMed  Google Scholar 

  29. Chabaud, L., James, P., and Landais, Y., Eur. J. Org.Chem., 2004, p. 3173. https://doi.org/10.1002/ejoc.200300789

Download references

ACKNOWLEDGMENTS

Spectral measurements and theoretical calculations were performed using the equipment of the Khimiya Center for Collective Use, Ufa Institute of Chemistry UFRS RAS.

Funding

The work was performed according to the State order no. AAAA-A20-120012090021-4 (АААА-А17-1170119100324) and financially supported in part by the Russian Foundation for Basic Research (project nos. 17-43-020326-а and 18-53-00011-Bel_а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Miftakhov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimazetdinov, A.M., Al’mukhametov, A.Z. & Miftakhov, M.S. 1,8-Diazabicyclo[5.4.0]undec-7-ene-Promoted Oxidation by Atmospheric Oxygen of an Allylsilane Derived from γ-Formyl-Substituted Cyclopentene. Russ J Org Chem 56, 255–260 (2020). https://doi.org/10.1134/S1070428020020128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020020128

Keywords:

Navigation