Skip to main content
Log in

Synthesis, Spectroscopic Properties, Quantum Chemical Calculations, and Biological Activities of 2-{[5-(2-Fluorophenyl)-4-(4-methylphenyl)-4H-1,2,4-triazol-3-yl]sulfanyl}-1-[3-methyl-3-(2,4,6-trimethylphenyl)-cyclobutyl]ethan-1-one

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

2-{[5-(2-Fluorophenyl)-4-(4-methylphenyl)-4H-1,2,4-triazol-3-yl]sulfanyl}-1-[3-methyl-3-(2,4,6-trimethylphenyl)cyclobutyl]ethanone was synthesized and characterized by spectral techniques and quantum chemical calculations. The molecular geometry, vibrational frequencies, and gauge-including atomic orbital (GIAO) 1H and 13C NMR chemical shifts of the title compound in the ground state were calculated using the density functional method (B3LYP) with the 6–311G(d, p) basis set, and its electronic absorption spectra were calculated by the TD-DFT method based on the B3LYP/6-311G(d, p) level optimized structure in ethanol by using the PCM model. The calculated results showed that the optimized geometry well reproduces the theoretical vibrational frequencies, and the calculated chemical shifts were in a good agreement with the experimental values. The energetic behavior of the title compound was examined using the B3LYP method with the 6-311G(d, p) basis set in the framework of the Onsager and polarizable continuum model (PCM). In addition, DFT calculations of frontier molecular orbitals were carried out at the B3LYP/6-311G(d, p) level of theory. The title compound showed antibacterial and antioxidant activities at different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, W.Y., Ma, Y.B., Bai, X., Zhang, X.M., Gu, Q., Zheng, Y.T., Zhou, J., and Chen, J.J., Planta Med., 2007, vol. 73, p. 372. https://doi.org/10.1055/s-2007-967162

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, C.H. and Wang, Y., Curr. Med. Chem., 2012, vol. 19, p. 239. https://doi.org/10.2174/092986712803414213

    Article  CAS  PubMed  Google Scholar 

  3. Mi, J., Wu, J., and Zhou, C., Huaxi Yaoxue Zazhi, 2008, vol. 23, p. 84. https://doi.org/10060103-200802-23-1-84-86-a

    CAS  Google Scholar 

  4. Küçükgüzel, Ş.G. and Çikla-Süzgün, P., Eur. J. Med. Chem. 2015, vol. 97, p. 830. https://doi.org/10.1016/j.ejmech.2014.11.033

    Article  CAS  PubMed  Google Scholar 

  5. Liu, K., Shi, W., and Cheng, P., Dalton Trans., 2011, vol. 40, p. 8475. https://doi.org/10.1039/C0DT01578D

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Fernandez, E., Manzano, J.L., Benito, J.J., Hermosa, R., Monte, E., and Criado, J., J. Inorg. Biochem., 2005, vol. 99, p. 1558. https://doi.org/10.1016/j.jinorgbio.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, C.H., Zhang, Y.Y., Yan, C.Y., Wan, K., Gan, L.L., and Shi, Y., Anticancer Agents Med Chem., 2010, vol. 10, p. 371. https://doi.org/10.2174/1871520611009050371

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, C., Gan, L., Zhang, Y., Zhang, F., and Wang, G.L., Sci. China, Ser. B: Chem., 2009, vol. 52, p. 415. https://doi.org/10.1007/s11426-009-0291-9

    Article  CAS  Google Scholar 

  9. Castro, A.C., Johansson, M.P., Merino, G., and Swart, M., Phys. Chem., 2012, vol. 14, p. 905. https://doi.org/10.1039/C2CP42045G

    Google Scholar 

  10. Kaplaushenko, A.G., Parchenko, V.V., Panasenko, A.I., and Knysh, E.G., Farm. Zh., 2010, no. 3, p. 120.

  11. Trzhtsinskaya, B.V., Aleksandrova, A.E., Apakina, E.V., Vinogradova, T.I., Shchegoleva, R.A., and Afonin, A.V., Pharm. Chem. J., 1991, vol. 25, p. 171. https://doi.org/10.1007/BF00772015

    Article  Google Scholar 

  12. Mir, I., Siddiqui, M.T., and Comrie, A., J. Pharm. Sci., 1991, vol. 80, p. 548. https://doi.org/10.1002/jps.2600800610

    Article  CAS  PubMed  Google Scholar 

  13. Ersan, S., Nacak, S., and Berkem, R., Farmaco, 1998, vol. 53, p. 773. https://doi.org/10.1016/S0014-827X(98)00095-0

    Article  CAS  PubMed  Google Scholar 

  14. Buzykin, B.I., Mironova, E.V., Nabiullin, V.N., Azancheev, N.M., Avvakumova, L.V., Rizvanov, I.K., Gubaidullin, A.T., Litvinov, I.A., and Syakaev, V.V., Russ. J. Gen. Chem., 2008, vol. 78, p. 461. https://doi.org/10.1134/S1070363208030225

    Article  CAS  Google Scholar 

  15. Szilágyi, G., Somorai, T., Bozó, É., Langó, J., Nagy, G., Reiter, J., Janáky, J., and Andrási, F., Eur. J. Med. Chem., 1990, vol. 25, p. 95. https://doi.org/10.1016/0223-5234(90)90015-U

    Article  Google Scholar 

  16. Maliszewska-Guz, A., Wujec, M., Pitucha, M., Dobosz, M., Chodkowska, A., Jagielo-Wojtowicz, E., Mazur, L., and Koziol, A.E., Chem. Commun., 2005, vol. 70, p. 51. https://doi.org/10.1135/cccc20050051

    CAS  Google Scholar 

  17. El-Barbary, A.A., Abou-El-Ezz, A.Z., Abdel-Kader, A.A., El-Daly, M., and Nielsen, C., Phosphorus, Sulfur Silicon Relat. Elem., 2004, vol. 179, p. 1497. https://doi.org/10.1080/10426500490463989

    Article  CAS  Google Scholar 

  18. Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008.

    Google Scholar 

  19. Dua, R., Shrivastava, S., Sonwane, S.K., and Srivastava, S.K., Adv. Biol. Res., 2011, vol. 5, no. 3, p. 120.

    CAS  Google Scholar 

  20. Katritzky, A., Ramsden, C., Joule, J., and Zhdankin, V., Handbook of Heterocyclic Chemistry, Amsterdam: Elsevier, 2010, 3rd ed.

    Google Scholar 

  21. Bentiss, F., Lagrenee, M., Traisnel, M., Mernari, B., and Elattari, H., J. Heterocycl. Chem., 1999, vol. 36, p. 149. https://doi.org/10.1002/jhet.5570360123

    Article  CAS  Google Scholar 

  22. Chenard, B.L., Lipinski, C.A., Dominy, B.W., Mena, E.E., Ronau, R.T., Butterfield, G.C., Pagnozzi, L.C., Butler, T.W., and Tsang, T., J. Med. Chem., 1990, vol. 33, p. 1077. https://doi.org/10.1021/jm00165a030

    Article  CAS  PubMed  Google Scholar 

  23. Palafox, M.A., Rastogi, V.K., Tanwar, R.P., and Mittal, L., Spectrochim. Acta, Part A, 2003, vol. 59, p. 2473. https://doi.org/10.1016/S1386-1425(02)00409-2

    Article  CAS  Google Scholar 

  24. Mohan, S., Sundaraganesan, N., and Mink, J., Spectrochim. Acta, Part A, 1991, vol. 47, p. 1111. https://doi.org/10.1016/0584-8539(91)80042-H

    Article  Google Scholar 

  25. Ten, G.N., Nechaev, V.V., Pankratov, A.N., Berezin, V.I., and Baranov, V.I., J. Struct. Chem., 2010, vol. 51, p. 854. https://doi.org/10.1007/s10947-010-0130-z

    Article  CAS  Google Scholar 

  26. Koparir, P., Sarac, K., Orek, C., and Koparir, M., J. Mol. Struct., 2016, vol. 1123, p. 407. https://doi.org/10.1016/j.molstruc.2016.07.046

    Article  CAS  Google Scholar 

  27. Cansiz, A., Orek, C., Koparir, M., Koparir, P., and Cetin, A., Spectrochim. Acta, Part A, 2012, vol. 91, p. 136. https://doi.org/10.1016/j.saa.2012.01.027

    Article  CAS  Google Scholar 

  28. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  29. Lee, C.T., Yang, W.T., and Parr, R.G., Phys. Rev., 1988, vol. 37, no. 2, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  30. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Wallingford CT: Gaussian, 2009.

    Google Scholar 

  31. Dennington, T.K.R. and Millam, J., GaussView, Version 5, Shawnee Mission KS: Semichem, 2009.

    Google Scholar 

  32. Wolinski, K., Hinton, J.F., and Pulay, P., J. Am. Chem. Soc., 1990, vol. 112, no. 23, p. 8251. https://doi.org/10.1021/ja00179a005

    Article  CAS  Google Scholar 

  33. Jian, F.F., Bai, Z.S., Li, K., and Xiao, H.L., Acta Crystallogr., Sect. E, 2005, vol. 61, p. o393. https://doi.org/10.1107/S1600536805001510

  34. Zhao, P.S., Xu, J.M., Zhang, W.G., Jian, F.F., and Zhang, L., Struct. Chem., 2007, vol. 18, p. 993. https://doi.org/10.1007/s11224-007-9235-1

    Article  CAS  Google Scholar 

  35. Koparir, M., Orek, C., Koparir, P., and Sarac, K., Spectrochim. Acta, Part A, 2013, vol. 105, p. 522. https://doi.org/10.1016/j.saa.2012.12.052

    Article  CAS  Google Scholar 

  36. Inkaya, E., Dinçer, M., Çukurovalı, A., and Yılmaz, E., Acta Crystallogr., Sect. E, 2011, vol. 67, p. 131. https://doi.org/10.1107/S1600536810049962

    Article  CAS  Google Scholar 

  37. Dinçer, M., Özdemir, N., Yilmaz, I., Çukurovali, A., and Büyükgüngör, O., Acta Crystallogr., Sect. C, 2004, vol. 60, p. o674. https://doi.org/10.1107/S0108270104018074

    Article  CAS  Google Scholar 

  38. Inkaya, E., Dinçer, M., Ekici, O., and Çukurovali, A., Spectrochim. Acta, Part A, 2013, vol. 101, p. 218. https://doi.org/10.1016/j.saa.2012.09.091

    Article  CAS  Google Scholar 

  39. Jameson, C.J., and de Dios, A.C., J. Chem. Phys., 1992, vol. 97, p. 417. https://doi.org/10.1063/1.463586

    Article  CAS  Google Scholar 

  40. Orek, C., Koparir, P., and Koparir, M., Spectrochim. Acta, Part A, 2012, vol. 97, p. 923. https://doi.org/10.1016/j.saa.2012.07.082

    Article  CAS  Google Scholar 

  41. Schlegel, H.B., J. Comput. Chem., 1982, vol. 3, no. 2, p. 214. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  42. Rao, C.N.R., Venkataraghavan, R., and Kasturi, T.R., Can. J. Chem., 1964, vol. 42, no. 1, p. 36. https://doi.org/10.1139/v64-006

    Article  CAS  Google Scholar 

  43. Miertuš, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  44. Miertus, S. and Tomasi, J., Chem. Phys., 1982, vol. 65, p. 239. https://doi.org/10.1016/0301-0104(82)85072-6

    Article  CAS  Google Scholar 

  45. Schmalz, T.G., Seitz, W.A., Klein, D.J., and Hite, G.E., J. Am. Chem. Soc., 1988, vol. 110, p. 1113. https://doi.org/10.1021/acs.jpcc.7b11940

    Article  CAS  Google Scholar 

  46. Bethune, D.S., Meijer, G., Tang, W.C., and Rosen, H.J., Chem. Phys. Lett., 1990, vol. 174, p. 219. https://doi.org/10.1016/0009-2614(90)85335-A

    Article  CAS  Google Scholar 

  47. Neta, P., Adv. Phys. Org. Chem., 1976, vol. 12, p. 223. https://doi.org/10.1016/S0065-3160(08)60332-9

    CAS  Google Scholar 

  48. Padmaja, L., Ravi Kumar, C., Sajan, D., Joe, I.H., Jayakumar, V.S., and Pettit, G.R., J. Raman Spectrosc., 2009, vol. 40, p. 419. https://doi.org/10.1002/jrs.2145

    Article  CAS  Google Scholar 

  49. Sagdinc, S. and Pir, H., Spectrochim. Acta, Part A, 2009. vol. 73, p. 181. https://doi.org/10.1016/j.saa.2009.02.022

  50. Jian, F.F., Zhao, P.S., Bai, Z.S., and Zhang, L., Struct. Chem., 2005, vol. 16, p. 635. https://doi.org/10.1007/s11224-005-8254-z

    Article  CAS  Google Scholar 

  51. Baldini, M., Belicchi-Ferrari, M., Bisceglie, F., Pelosi, G., Pinelli, S., and Tarasconi, P., Inorg. Chem., 2004, vol. 43, p. 7170. https://doi.org/10.1021/ic049883b

    Article  CAS  PubMed  Google Scholar 

  52. Ashfield, L.J., Cowley, A.R., Dilworth, J.R., and Donnelly, P.S., Inorg. Chem., 2004, vol. 43, p. 4121. https://doi.org/10.1021/ic035451+

    Article  CAS  PubMed  Google Scholar 

  53. Casas, J.S., Castellano, E.E., Ellena, J., García Tasende, M.S., Sánchez, A., Sordo, J., and Vidarte, M.J., Inorg. Chem., 2003, vol. 42, p. 2584. https://doi.org/10.1021/ic026219r

    Article  CAS  PubMed  Google Scholar 

  54. Baumann, J., Wurn, G., and Bruchhausen, V., Arch. Pharm., 1980, vol. 313, no. 4, p. 330. https://doi.org/10.1002/ardp.19803130409

    Article  CAS  Google Scholar 

  55. Clinical Laboratory Standards Institute (CLSI). https://clsi.org. Accessed November 14, 2018.

  56. Blois, M.S., Nature, 1958, vol. 181, p. 1199. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sarac.

Ethics declarations

No conflict of interest is declared by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarac, K. Synthesis, Spectroscopic Properties, Quantum Chemical Calculations, and Biological Activities of 2-{[5-(2-Fluorophenyl)-4-(4-methylphenyl)-4H-1,2,4-triazol-3-yl]sulfanyl}-1-[3-methyl-3-(2,4,6-trimethylphenyl)-cyclobutyl]ethan-1-one. Russ J Org Chem 56, 119–128 (2020). https://doi.org/10.1134/S1070428020010194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020010194

Keywords

Navigation