Skip to main content
Log in

Synthesis of Polysubstituted Pyridopyrimidines, Pyrimidines, and Pyrazoles Based on 1,1-Bis(1H-benzotriazol-1-yl)-and 1,1-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-3,4,4-trichloro-2-nitrobuta-1,3-dienes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The reaction of 3,4,4-trichloro-1,1-bis(3,5-dimethyl-1H-pyrazol-1-yl)-2-nitrobuta-1,3-diene with 2-aminopyridine gave a polysubstituted pyrido[1,2-a]pyrimidine derivative with an aminopyridine residue in the 2-position, whereas heterocyclization of 3,4,4-trichloro-1,1-bis(1H-benzotriazol-1-yl)-2-nitrobuta-1,3-diene with substituted 2-aminopyridines afforded 2-(1H-berrzotriazol-1-yl)pyrido[1,2-a]pyrimidines. 2-(Morpholin-4-yl), 2-amino, and 2-(2-hydroxyethylamino) derivatives of polysubstituted pyrido[1,2-a]pyrimidines were synthesized, and those containing a 2-hydroxyethylamino group were converted to the corresponding 4,5-dichloro-1,2-thiazole-1-carboxylates. Specific features of heterocyclizations of benzotriazolyl and dimethylpyrazolyl derivatives of trichloronitro-1,3-butadiene to pyrimidine and pyrazole systems were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaberdin, R.V., Potkin, V.I., and Zapol’skii, V.A., Russ. Chem. Rev., 1997, vol. 66, p. 827. https://doi.org/10.1070/RC1997v066n10ABEH000310

    Article  Google Scholar 

  2. Sari, O., Erdem, S.S., and Kaufmann, D.E., J. Org. Chem., 2014, vol. 79, p. 2123. https://doi.org/10.1021/jo402858j

    Article  CAS  Google Scholar 

  3. Ibis, C. and Denis, N.G., Indian J. Chem., Sect. B, 2008, vol. 47, p. 1407.

    Google Scholar 

  4. Potkin, V.I. and Kaberdin, R.V., Chem. Heterocycl. Compd., 2007, vol. 43, no. 12, p. 1493. https://doi.org/10.1007/s10593-007-0233-4

    Article  CAS  Google Scholar 

  5. Kaberdin, R.V. and Potkin, V.I., Russ. Chem. Rev., 2002, vol. 71, p. 673. https://doi.org/10.1070/RC2002v071n08ABEH000738

    Article  CAS  Google Scholar 

  6. Zapol’skii, V.A., Fischer, R., Namyslo, J.C., and Kaufmann, D.E., Bioorg. Med. Chem., 2009, vol. 17, p. 4206. https://doi.org/10.1016/j.bmc.2009.01.001

    Article  Google Scholar 

  7. Zapol’skii, VA., Namyslo, J.C., de Meijere, A., and Kaufmann, D.E., Beilstein J. Org. Chem., 2012, vol. 8, p. 621. https://doi.org/10.3762/bjoc.8.69

    Article  Google Scholar 

  8. Zapol’skii, V.A., Namyslo, J.C., Gjikaj, M., and Kaufmann, D.E., Beilstein J. Org. Chem., 2014, vol. 10, p. 1638. https://doi.org/10.3762/bjoc.10.170

    Article  Google Scholar 

  9. Kulchitsky, V.A., Potkin, V.I., Zubenko, Yu.S., Chernov, A.N., Talabaev, M.V., Demidchik, Yu.E., Petkevich, S.K., Kazbanov, V.V., Gurinovich, T.A., Roeva, M.O., Grigoriev, D.G., Kletskov, A.V., and Kalunov, V.N., Med. Chem., 2012, vol. 8, p. 22. https://doi.org/10.2174/157340612799278298

    Article  CAS  Google Scholar 

  10. Kletskov, A.V., Potkin, V.I., Dikusar, E.A., and Zolotar, R.M., Nat. Prod. Commun., 2017, vol. 12, p. 105. https://doi.org/10.1177/1934578X1701200130

    Google Scholar 

  11. Ukrainets, I.V., Taran, K.A., and Bereznyakova, N.L., J. Org. Pharm. Chem., 2014, vol. 12, no. 2, p. 65. https://doi.org/10.24959/ophcj.14.789

    Article  CAS  Google Scholar 

  12. La Motta, C., Sartini, S., Mugnaini, L., Simorini, F., Taliani, S., Salerno, S., Marini, A.M., Da Settimo, F., Lavecchia, A., Novellino, E., Cantore, M., Failli, P., and Ciuffi, M., J. Med. Chem., 2007, vol. 50, p. 4917. https://doi.org/10.1021/jm070398a

    Article  CAS  Google Scholar 

  13. Zapol’skii, VA., Potkin, VI., Nechai, N.I., Kaberdin, R.V., and Pevzner, M.S., Russ. J. Org. Chem., 1997, vol. 33, p. 1461.

    Google Scholar 

  14. Zapol’skii, V.A., Potkin, V.I., Nechai, N.I., Kaberdin, R.V., and Pevzner, M.S., Russ. J. Org. Chem., 1997, vol. 33, p. 1632.

    Google Scholar 

  15. Takhistov, V.V., Prakticheskaya mass-spektrometriya organicheskikh soedinenii (Practical Mass Spectrometry of Organic Compounds), Leningrad: Leningr. Gos. Univ., 1977.

    Google Scholar 

  16. Takhistov, V.V., Rodin, A.A., and Maksimova, B.N., Russ. Chem. Rev., 1991, vol. 60, p. 1101. https://doi.org/10.1070/RC1991v060n10ABEH001132

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. A.P. Tyurin (Gauze Research Institute of New Antibiotics, Russian Academy of Sciences, Moscow, Russia) for biological testing of some of the synthesized compounds.

Funding

This study was performed under financial support by the Belarusian Republican Foundation for Basic Research (project no. X18M-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kolesnyk.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Organicheskoi Khimii, 2020, Vol. 56, No. 1, pp. 31–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnyk, I.A., Petkevich, S.K., Tsaryk, A.D. et al. Synthesis of Polysubstituted Pyridopyrimidines, Pyrimidines, and Pyrazoles Based on 1,1-Bis(1H-benzotriazol-1-yl)-and 1,1-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-3,4,4-trichloro-2-nitrobuta-1,3-dienes. Russ J Org Chem 56, 20–28 (2020). https://doi.org/10.1134/S1070428020010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020010042

Keywords

Navigation