Skip to main content
Log in

Transesterification of Diethyl Carbonate with Methanol Catalyzed by Sodium Methoxide

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of sodium methoxide-catalyzed transesterification of diethyl carbonate with metha-nol to dimethyl carbonate has been studied by DFT quantum chemical calculations using B3LYP functional. Ethoxy groups in the substrate are replaced successively through four-coordinate carbon intermediates which undergo decomposition. Sodium methoxide with carbonates forms pre-reaction complexes where the sodium cation is coordinated to the carbonate fragment. These complexes are characterized by enhanced electron-donating power of the methoxy fragment and increased electron-withdrawing power of the carbonate fragment, which favors the transesterification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shukla, K., Srivastava, V.Ch., Fuel Process. Technol., 2017, vol. 161, p. 116. doi 10.1016/j.fuproc.2017.03.004

    Article  CAS  Google Scholar 

  2. Ma, Y., Wang, H., Wang, L., and Li, H., J. Environ. Manage., 2019, vol. 232, p. 952. doi 10.1016/j.jenvman.2018.12.013

    Article  CAS  Google Scholar 

  3. Shukla, K. and Srivastava, V.Ch., RSC Adv., 2016, vol. 6, p. 32624. doi 10.1039/C6RA02518H

    Article  CAS  Google Scholar 

  4. Kerton, F.M. and Marriott, R., Alternative Solvents for Green Chemistry, Cambridge: RSC, 2013, 2nd ed.

    Google Scholar 

  5. Schäffner, B., Schäffner, F., Verevkin, S.P., and Armin, B., Chem. Rev., 2010, vol. 110, p. 4554. doi 10.1021/cr900393d

    Article  Google Scholar 

  6. Brown, D., Gaunt, I.F., Hardy, J., Kiss, I.S., and Butterworth, K.R., Toxicology, 1978, vol. 10, p. 291. doi 10.1016/0300-483X(78)90079-3.

    Article  CAS  Google Scholar 

  7. Giorgini, M.G., Futamatagawa, K., Torii, H., Musso, M., and Cerini, S., Phys. Chem. Lett., 2015, vol. 6, p. 3296. doi 10.1021/acs.jpclett.5b01524

    Article  CAS  Google Scholar 

  8. Lei, Y., Qin, L., Liu, R., Lau, K.Ch., Wu, Y., Zha, D., Li, B., and Kang, F., ACS Appl. Energy Mater., 2018, vol. 1, p. 1828. doi 10.1021/acsaem.8b00214

    Article  CAS  Google Scholar 

  9. Song, X., Meng, T., Deng, Y., Gao, A., Nan, J., Shu, D., and Yi, F., Electrochim. Acta, 2018, vol. 281, p. 370. doi 10.1016/j.electacta.2018.05.185

    Article  CAS  Google Scholar 

  10. Jiang, Z., Liu, Ch., Xie, W., and Gross, R.A., Macromolecules, 2007, vol. 40, p. 7934. doi 10.1021/ma070665m

    Article  CAS  Google Scholar 

  11. Gu, J., Gao, Y., Xu, X., Wu, J., Yu, L., Xin, Z., and Sun, Sh., Fuel, 2018, vol. 216, p. 781. doi 10.1016/j.fuel.2017.09.081

    Article  CAS  Google Scholar 

  12. Winkler, Ch.K., Clay, D., Davies, S., O’Neill, P., McDaid, P., Debarge, S., Steflik, J., Karmilowicz, M., Wong, J.W., and Faber, K., J. Org. Chem., 2013, vol. 78, p. 1525. doi 10.1021/jo302484p

    Article  CAS  Google Scholar 

  13. Gandi, V.R. and Lu, Y., Chem. Commun., 2015, vol. 51, p. 16188. doi 10.1039/C5CC06197K

    Article  CAS  Google Scholar 

  14. Soman, Sh.S., Soni, J.N., and Patel, T.B., Med. Chem. Res., 2014, vol. 23, p. 3803. doi 10.1007/s00044-014-0961-9

    Article  CAS  Google Scholar 

  15. Ding, J., Guan, W., Wan, P., Wang, L., Wan, H., and Guan, G., J. Chem. Eng. Data, 2016, vol. 61, p. 3724. doi 10.1021/acs.jced.6b00085

    Article  CAS  Google Scholar 

  16. Marrufo, B., Pla-Franco, J., Lladosa, E., and Loras, S., J. Chem. Eng. Data, 2017, vol. 62, p. 1355. doi 10.1021/acs.jced.6b00905

    Article  CAS  Google Scholar 

  17. He, M., Wang, Ch., Chen, J., Liu, X., Xin, N., and Zhang, Y., Fluid Phase Equilib., 2018, vol. 471, p. 17. doi 10.1016/j.fluid.2018.04.021

    Article  CAS  Google Scholar 

  18. Wang, S., Wang, J., Sun, P., Xu, L., Okoye, P.U., Li, S., Zhang, L., Guo, A., Zhang, J., and Zhang, A., J. Cleaner Prod., 2019, vol. 211, p. 330. doi 10.1016/j.jclepro.2018.11.196

    Article  CAS  Google Scholar 

  19. Shi, Y., Chen, T., Chen, R., Tank, Z., and Wang, G., Chem. Lett., 2018, vol. 47, p. 1135. doi 10.1246/cl.180460

    Article  CAS  Google Scholar 

  20. Iida, H., Kawaguchi, R., and Okumura, K., Catal. Commun., 2018, vol. 108, p. 7. doi 10.1016/j.catcom.2018.01.019

    Article  CAS  Google Scholar 

  21. Fiorani, G., Perosa, A., and Selva, M., Green Chem., 2018, vol. 20, p. 288. doi 10.1039/C7GC02118F

    Article  CAS  Google Scholar 

  22. Zhou, R., Liu, J., Jia, L., Lü, X., and Song, Z., Inorg. Chem. Commun., 2018, vol. 90, p. 57. doi 10.1016/j.inoche.2018.02.007

    Article  CAS  Google Scholar 

  23. Jie, H., Ke, H., Qing, Z., Lei, C., Yongqiang, W., and Zibin, Z., Polym. Degrad. Stab., 2006, vol. 91, p. 2307. doi 10.1016/j.polymdegradstab.2006.04.012

    Article  CAS  Google Scholar 

  24. Liu, F., Li, Z., Yu, S., Cui, X., and Ge, X., J. Hazard. Mater., 2010, vol. 174, p. 872. doi 10.1016/j.jhazmat.2009.09.007

    Article  CAS  Google Scholar 

  25. Nikje, M.M.A., Polimery, 2011, vol. 56, p. 381.

    Article  CAS  Google Scholar 

  26. Song, Z., Subramaniam, B., and Chaudhari, R.V., Ind. Eng. Chem. Res., 2018, vol. 57, p. 14977. doi 10.1021/acs.iecr.8b03837

    Article  CAS  Google Scholar 

  27. Murugan, C. and Bajaj, H.C., Fuel Process. Technol., 2011, vol. 92, p. 77. doi 10.1016/j.fuproc.2010.08.023

    Article  CAS  Google Scholar 

  28. Cresce, A.V., Russell, S.M., Borodin, O., Allen, J.A., Schroeder, M.A., Dai, M., Peng, J., Gobet, M.P., Greenbaum, S.G., Rogers, R.E., and Xu, K., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 574. doi 10.1039/C6CP07215A

    Article  CAS  Google Scholar 

  29. Shakourian-Fard, M., Kamath, G., Smith, K., Xiong, H., and Sankaranarayanan, S.K.R.S., J. Phys. Chem. C, 2015, vol. 119, p. 22747. doi 10.1021/acs.jpcc.5b04706

    Article  CAS  Google Scholar 

  30. Weinhold, F. and Landis, C.R., Discovering Chemistry with Natural Bond Orbitals, Hoboken: Wiley, 2012.

    Book  Google Scholar 

  31. Weinhold, F. and Landis, C.R., Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge: Cambridge Univ., 2005.

    Book  Google Scholar 

  32. Heelmann, A., Jansen, G., and Schütz, M., J. Chem. Phys., 2005, vol. 122, article no. 014103-1. doi 10.1063/1.1824898

  33. Tabanelli, T., Monti, E., Cavani, F., and Selva, M., Green Chem., 2017, vol. 19, p. 1519. doi 10.1039/C6GC03466G

    Article  CAS  Google Scholar 

  34. Crocellà, V., Tabanelli, T., Vitillo, J.G., Costenaro, D., Bisio, Ch., Cavani, F., and Bordiga, S., Appl. Catal., B, 2017, vol. 211, p. 323. doi 10.1016/j.apcatb.2017.04.013

    Article  Google Scholar 

  35. Fang, Y.-J. and Xiao, W.-D., Sep. Purif. Technol., 2004, vol. 34, p. 255. doi 10.1016/S1383-5866(03)00198-9

    Article  CAS  Google Scholar 

  36. Holtbruegge, J., Leimbrink, M., Lutze, P., and Górak, A., Chem. Eng. Sci., 2013, vol. 104, p. 347. doi 10.1016/j.ces.2013.09.007

    Article  CAS  Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision A.1, Wallingford CT: Gaussian, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Samuilov.

Ethics declarations

The authors declare the absence of conflict of interests.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 9, pp. 1426–1432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuilov, A.Y., Korshunov, M.V. & Samuilov, Y.D. Transesterification of Diethyl Carbonate with Methanol Catalyzed by Sodium Methoxide. Russ J Org Chem 55, 1338–1343 (2019). https://doi.org/10.1134/S1070428019090124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019090124

Keywords

Navigation