Skip to main content
Log in

Metal Complex Catalysis in the Synthesis of Ethers

  • Review
  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The review systematizes and generalizes modern approaches to the synthesis of ethers using metal complex catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golubeva, I.A. and Tolstykh, L.I., Osnovy tekhnologii neftekhimicheskogo sinteza i proizvodstva prisadok (Principles of Technologies of Petrochemical Synthesis and Manufacture of Additives), Moscow: GANG, 1996.

    Google Scholar 

  2. Hydrocarbon Chemistry, Olah, G.A. and Molnár, Á., Eds., New York: Wiley, 2003, p. 1.

    Book  Google Scholar 

  3. Greene, T.W. and Wuts, P.G.M., Protective Groups in Organic Synthesis, New York: Wiley, 1999, 3rd ed., p. 23.

    Book  Google Scholar 

  4. McCloskey, C.M., Adv. Carbohydr. Chem., 1957, vol. 12, p. 137. doi https://doi.org/10.1016/S0096-5332(08)60207-6

    CAS  PubMed  Google Scholar 

  5. Kasprzycka, A., Ptaszek-Budniok, A., and Szeja, W., Synth. Commun., 2014, vol. 44, p. 2276. doi https://doi.org/10.1080/00397911.2014.894526

    Article  CAS  Google Scholar 

  6. Liu, Y., Hua, R., Sun, H.-B., and Qiu, X., Organometallics, 2005, vol. 24, p. 2819. doi https://doi.org/10.1021/om049040s

    Article  CAS  Google Scholar 

  7. Zhu, Z. and Espenson, J.H., J. Org. Chem., 1996, vol. 61, p. 324. doi https://doi.org/10.1021/jo951613a

    Article  CAS  Google Scholar 

  8. Bikard, Y., Mezaache, R., Weibel, J.-M., Benkouider, A., Sirlin, C., and Pale, P., Tetrahedron, 2008, vol. 64, p. 10224. doi https://doi.org/10.1016/j.tet.2008.08.026

    Article  CAS  Google Scholar 

  9. Bikard, Y., Weibel, J.M., Blanc, A., and Pale, P., Tetrahedron Lett., 2007, vol. 48, p. 8895. doi https://doi.org/10.1016/j.tetlet.2007.10.045

    Article  CAS  Google Scholar 

  10. Yadav, J.S., Bhunia, D.C., Krishna, K.V., and Srihari, P., Tetrahedron Lett., 2007, vol. 48, p. 8306. doi https://doi.org/10.1016/j.tetlet.2007.09.140

    Article  CAS  Google Scholar 

  11. Sherry, B.D., Radisevich, A.T., and Toste, F.D., J. Am. Chem. Soc., 2003, vol. 125, p. 6076. doi https://doi.org/10.1021/ja0343050

    Article  CAS  PubMed  Google Scholar 

  12. Kuninobu, Y., Ueda, H., and Takai, K., Chem. Lett., 2008, vol. 37, p. 878. doi https://doi.org/10.1246/cl.2008.878

    Article  CAS  Google Scholar 

  13. Cuenca, A.B., Mancha, G., Asensio, G., and Medio-Simon, M., Chem. Eur. J., 2008, vol. 14, p. 1518. doi https://doi.org/10.1002/chem.200701134

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, X., London, E.K., Morris, D.J., Clarkson, G.J., and Wills, M., Tetrahedron, 2010, vol. 66, p. 9828. doi https://doi.org/10.1016/j.tet.2010.10.068

    Article  CAS  Google Scholar 

  15. Georgy, M., Boucard, V., Debleds, O., Dal Zotto, C., and Campagne, J.M., Tetrahedron, 2009, vol. 65, p. 1758. doi https://doi.org/10.1016/j.tet.2008.12.051

    Article  CAS  Google Scholar 

  16. Veenboer, R.M.P. and Nolan, S.P., Green Chem., 2015, vol. 17, p. 3819. doi https://doi.org/10.1039/c5gc00684h

    Article  CAS  Google Scholar 

  17. Kim, J., Lee, D.-H., Kalutharage, N., and Yi, C.S., ACS Catal., 2014, vol. 4, p. 3881. doi https://doi.org/10.1021/cs5012537

    Article  CAS  Google Scholar 

  18. Miller, K.J. and Abu-Omar, M.M., Eur. J. Org. Chem., 2003, p. 1294. doi https://doi.org/10.1002/ejoc.200390185

  19. Biswas, S. and Samec, J.S.M., Chem. Asian J., 2013, vol. 8, p. 974. doi https://doi.org/10.1002/asia.201201178

    Article  CAS  PubMed  Google Scholar 

  20. Zhan, Z.-P., Yu, J.-L., Cui, Y.-Y., Yang, R.-F., Yang, W.-Z., and Li, J.-P., J. Org. Chem., 2006, vol. 71, p. 8298. doi https://doi.org/10.1021/jo061234p

    Article  CAS  PubMed  Google Scholar 

  21. Salehi, F., Iranpoor, N., and Behbahani, F.K., Tetrahedron, 1998, vol. 54, p. 943. doi https://doi.org/10.1016/S0040-4020(97)10350-7

    Article  CAS  Google Scholar 

  22. Namboodiri, V.V. and Varma, R.S., Tetrahedron Lett., 2002, vol. 43, p. 4593. doi https://doi.org/10.1016/S0040-4039(02)00890-0

    Article  CAS  Google Scholar 

  23. Sharma, G.V.M., Prasad, T.R., and Mahalingam, A.K., Tetrahedron Lett., 2001, vol. 42, p. 759. doi https://doi.org/10.1016/S0040-4039(00)02108-0

    Article  CAS  Google Scholar 

  24. Moghadam, B.N., Akhlaghinia, B., and Rezazadeh, S., Res. Chem. Intermed., 2016, vol. 42, p. 1487. doi https://doi.org/10.1007/s11164-015-2098-y

    Article  CAS  Google Scholar 

  25. Mezaache, R., Dembelé, Y.A., Bikard, Y., Weibel, J.M., Blanc, A., and Pale, P., Tetrahedron Lett., 2009, vol. 50, p. 7322. doi https://doi.org/10.1016/j.tetlet.2009.10.053

    Article  CAS  Google Scholar 

  26. Khusnutdinov, R.I., Bayguzina, A.R., Gimaletdinova, L.I., and Dzhemilev, U.M., Russ. J. Org. Chem., 2012, vol. 48, p. 1191. doi https://doi.org/10.1134/S1070428012090072

    Article  CAS  Google Scholar 

  27. Dzhemilev, U.M., Khusnutdinov, R.I. Baiguzina, A.R., and Rasulev, T.V., RU Patent no. 2433 991, 2011; Chem. Abstr., 2011, vol. 155, no. 656 550.

  28. Bayguzina, A.R., Gimaletdinova, L.I., and Khusnutdinov, R.I., Russ. J. Org. Chem., 2018, vol. 54, p. 1148. doi https://doi.org/10.1134/S1070428018080055

    Article  CAS  Google Scholar 

  29. Dzhemilev, U.M., Khusnutdinov, R.I., Baiguzina, A.R., and Gimaletdinova, L.I., RU Patent no. 2536486, 2014; Chem. Abstr., 2014, vol. 162, no. 106729.

  30. Khusnutdinov, R.I., Bayguzina, A.R., Mukminov, R.R., Gimaletdinova, L.I., and Dzhemilev, U.M., Arkivoc, 2014, part (iv), p. 342. doi https://doi.org/10.3998/ark.5550190.p008.393

  31. Dzhemilev, U.M., Khusnutdinov, R.I., Baiguzina, A.R., Aminov, R.I., Mukminov, R.R., Gimaletdinova, L.I., and Litvinchuk, V.E., RU Patent no. 2582620, 2016; Chem. Abstr., 2016, vol. 164, no. 483 519.

  32. Bayguzina, A.R., Gimaletdinova, L.I., and Khusnutdinov, R.I., Russ. J. Org. Chem., 2017, vol. 53, p. 1840. doi https://doi.org/10.1134/S1070428017120090

    Article  CAS  Google Scholar 

  33. Dzhemilev, U.M., Khusnutdinov, R.I., Baiguzina, A.R., and Gimaletdinova, L.I., RU Patent no. 2644163, 2018. Chem. Abstr., 2018, vol. 168, no. 254843.

  34. Kraatz, U., Chem. Ber., 1973, vol. 106, p. 3095. doi https://doi.org/10.1002/cber.19731060941

    Article  CAS  Google Scholar 

  35. Schlummer, B. and Scholz, U., Adv. Synth. Catal., 2004, vol. 346, p. 1599. doi https://doi.org/10.1002/adsc.200404216

    Article  CAS  Google Scholar 

  36. Burgos, C.H., Barder, T.E., Huang, X., and Buchwald, S.L., Angew. Chem., Int. Ed., 2006, vol. 45, p. 4321.

    Article  CAS  Google Scholar 

  37. Gowrisankar, S., Sergeev, A.G., Anbarasan, P., Spannenberg, A., Neumann, H., and Beller, M., J. Am. Chem. Soc., 2010, vol. 132, p. 11592. doi https://doi.org/10.1021/ja103248d

    Article  CAS  PubMed  Google Scholar 

  38. Akkoç, M., Gürbüz, N., Çetinkaya, E., and Özdemir, I., Synlett., 2008, p. 1781. doi https://doi.org/10.1055/s-2008-1078548

  39. Cheung, C.W. and Buchwald, S.L., Org. Lett., 2013, vol. 15, p. 3966. doi https://doi.org/10.1021/ol401796v

    Article  CAS  Google Scholar 

  40. Parrish, C.A. and Buchwald, S.L., J. Org. Chem., 2001, vol. 66, p. 2498. doi https://doi.org/10.1021/jo001426z

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, K.W., Ikawa, T., Tundel, R.E., and Buchwald, S.L., J. Am. Chem. Soc., 2006, vol. 128, p. 10694. doi https://doi.org/10.1021/ja0639719

    Article  CAS  PubMed  Google Scholar 

  42. Dzhemilev, U.M., Khusnutdinov, R.I., Shchadneva, N.A., and Malikov, A.I., RU Patent no. 2145593, 1998. Chem. Abstr., 2001, vol. 135, no. 210774.

  43. Khusnutdinov, R.I., Shchadneva, N.A., Malikov, A.I., and Dzhemilev, U.M., Pet. Chem., 2000, vol. 40, p. 419.

    Google Scholar 

  44. Iwanami, K., Seo, H., Tobita, Y., and Oriyama, T., Synthesis, 2005, p. 183. doi https://doi.org/10.1055/s-2004-834942

  45. Evano, G., Blanchard, N., and Toumi, M., Chem. Rev., 2008, vol. 108, p. 3054. doi https://doi.org/10.1021/cr8002505

    Article  CAS  PubMed  Google Scholar 

  46. Miao, T. and Wang, L., Tetrahedron Lett., 2007, vol. 48, p. 95. doi https://doi.org/10.1016/j.tetlet.2006.11.001

    Article  CAS  Google Scholar 

  47. Huang, J., Chen, Y., Chan, J., Ronk, M.L., Larsen, R.D., and Faul, M.M., Synlett, 2011, p. 1419. doi https://doi.org/10.1055/s-0030-1260761

  48. Chang, J.W.W., Chee, S., Mak, S., Buranaprasertsuk, P., Chavasiri, W., and Chan, P.W.H., Tetrahedron Lett., 2008, vol. 49, p. 2018. doi https://doi.org/10.1016/j.tetlet.2008.01.062

    Article  CAS  Google Scholar 

  49. Altman, R.A., Shafir, A., Lichtor, P.A., and Buchwald, S.L., J. Org. Chem., 2008, vol. 73, p. 284. doi https://doi.org/10.1021/jo702024p

    Article  CAS  PubMed  Google Scholar 

  50. Hosseinzadeh, R., Tajbakhsh, M., Mohadjerani, M., and Alikarami, M., Synlett, 2005, no. 7, p. 1101. doi https://doi.org/10.1055/s-2005-865198

  51. Zhang, H., Ma, D., and Cao, W., Synlett, 2007, p. 243. doi https://doi.org/10.1055/s-2007-968010

  52. Ma, D. and Cai, Q., Org. Lett., 2003, vol. 5, p. 3799. doi https://doi.org/10.1021/ol0350947

    Article  CAS  PubMed  Google Scholar 

  53. Chen, W., Li, J., Fang, D., Feng, C., and Zhang, C., Org. Lett., 2008, vol. 10, p. 4565. doi https://doi.org/10.1021/ol801730g

    Article  CAS  PubMed  Google Scholar 

  54. Wolter, M., Nordmann, G., Job, G.E., and Buchwald, S.L., Org. Lett., 2002, vol. 4, p. 973. doi https://doi.org/10.1021/ol025548k

    Article  CAS  PubMed  Google Scholar 

  55. Gujadhur, R. and Venkataraman, D., Synth. Commun., 2001, vol. 31, p. 2865. doi https://doi.org/10.1081/SCC-100105338

    Article  CAS  Google Scholar 

  56. Gujadhur, R.K., Bates, C.G., and Venkataraman, D., Org. Lett., 2001, vol. 3, p. 4315. doi https://doi.org/10.1021/ol0170105

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Y.-J. and Chen, H.-H., Org. Lett., 2006, vol. 8, p. 5609. doi https://doi.org/10.1021/ol062339h

    Article  CAS  PubMed  Google Scholar 

  58. Naidu, A.B., Raghunath, O.R., Prasad, D.J.C., and Sekar, G., Tetrahedron Lett., 2008, vol. 49, p. 1057. doi https://doi.org/10.1016/j.tetlet.2007.11.203

    Article  CAS  Google Scholar 

  59. Buck, E., Song, Z.J., Tschaen, D., Dormer, P.G., Volante, R.P., and Reider, P.J., Org. Lett., 2002, vol. 4, p. 1623. doi https://doi.org/10.1021/ol025839t

    Article  CAS  PubMed  Google Scholar 

  60. Monnier, F. and Taillefer, M., Angew. Chem., Int. Ed., 2009, vol. 48, p. 6954. doi https://doi.org/10.1002/anie.200804497

    Article  CAS  Google Scholar 

  61. Xia, N. and Taillefer, M., Chem. Eur. J., 2008, vol. 14, p. 6037. doi https://doi.org/10.1002/chem.200800436

    Article  CAS  PubMed  Google Scholar 

  62. Taillefer, M., Xia, N., and Ouali, A., PCT Patent Appl. Pub. no. WO2008004088 A2, 2008; Chem. Abstr., 2008, vol. 148, no. 144 205.

  63. Cristau, H.-J., Cellier, P.P., Hamada, S., Spindler, J.-F., and Taillefer, M., Org. Lett., 2004, vol. 6, p. 913. doi https://doi.org/10.1021/ol036290g

    Article  CAS  PubMed  Google Scholar 

  64. Schareina, T., Zapf, A., Cotte, A., Muller, N., and Beller, M., Tetrahedron Lett., 2008, vol. 49, p. 1851. doi https://doi.org/10.1016/j.tetlet.2008.01.036

    Article  CAS  Google Scholar 

  65. Niu, J., Zhou, H., Li, Z., Xu, J., and Hu, S., J. Org. Chem., 2008, vol. 73, p. 7814. doi https://doi.org/10.1021/jo801002c

    Article  CAS  PubMed  Google Scholar 

  66. Manbeck, G.F., Lipman, A.J., Stockland, R.A., Freidl, A.L., Hasler, A.F., Stone, J.J., and Guzei, I.A., J. Org. Chem., 2005, vol. 70, p. 244. doi https://doi.org/10.1021/jo048761y

    Article  CAS  PubMed  Google Scholar 

  67. Kidwai, M., Mishra, N.K., Bansal, V., Kumar, A., and Mozumdar, S., Tetrahedron Lett., 2007, vol. 48, p. 8883. doi https://doi.org/10.1016/j.tetlet.2007.10.050

    Article  CAS  Google Scholar 

  68. Lipshutz, B.H., Unger, J.B., and Taft, B.R., Org. Lett., 2007, vol. 9, p. 1089. doi https://doi.org/10.1021/ol0700409

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Y. and Zhang, S., Synlett, 2011, p. 268. doi https://doi.org/10.1055/s-0030-1259291

  70. Kundu, D., Maity, P., and Ranu, B.C., Org. Lett., 2014, vol. 16, p. 1040. doi https://doi.org/10.1021/ol500134p

    Article  CAS  PubMed  Google Scholar 

  71. Paul, R., Ali, M.A., and Punniyamurthy, T., Synthesis, 2010, p. 4268. doi https://doi.org/10.1055/s-0030-1258965

  72. Smith, K. and Jones, D., J. Chem. Soc., Perkin Trans. 1, 1992, p. 407. doi https://doi.org/10.1039/P19920000407

  73. Zadmard, R., Aghapoor, K., Bolourtchian, M., and Saidi, M.R., Synth. Commun., 1998, vol. 28, p. 4495. doi https://doi.org/10.1080/00397919808004511

    Article  CAS  Google Scholar 

  74. Kim, H.J., Kim, M., and Chang, S., Org. Lett., 2011, vol. 13, p. 2368. doi https://doi.org/10.1021/ol200603c

    Article  CAS  PubMed  Google Scholar 

  75. Quach, T.D. and Batey, R.A., Org. Lett., 2003, vol. 5, p. 1381. doi https://doi.org/10.1021/ol034454n

    Article  CAS  PubMed  Google Scholar 

  76. Evans, D.A., Katz, J.L., and West, T.R., Tetrahedron Lett., 1998, vol. 39, p. 2937. doi https://doi.org/10.1016/S0040-4039(98)00502-4

    Article  CAS  Google Scholar 

  77. Sagar, A.D., Tale, R.H., and Adude, R.N., Tetrahedron Lett., 2003, vol. 44, p. 7061. doi https://doi.org/10.1016/S0040-4039(03)01776-3

    Article  CAS  Google Scholar 

  78. Tale, R.H. and Patil, K.M., Tetrahedron Lett., 2002, vol. 43, p. 9715. doi https://doi.org/10.1016/S0040-4039(02)02256-6

    Article  CAS  Google Scholar 

  79. Tale, R.H., Patil, K.M., and Dapurkar, S.E., Tetrahedron Lett., 2002, vol. 44, p. 3427. doi https://doi.org/10.1016/S0040-4039(03)00035-2

    Article  CAS  Google Scholar 

  80. Chan, D.M.T., Monaco, K.L., Wang, R.-P., and Winteres, M.P., Tetrahedron Lett., 1998, vol. 39, p. 2933. doi https://doi.org/10.1016/S0040-4039(98)00503-6

    Article  CAS  Google Scholar 

  81. Tzschucke, C.C., Murphy, J.M., and Hartwig, J.F., Org. Lett., 2007, vol. 9, p. 761. doi https://doi.org/10.1021/ol062902w

    Article  CAS  PubMed  Google Scholar 

  82. Kuwano, R. and Kusano, H., Org. Lett., 2008, vol. 10, p. 1979. doi https://doi.org/10.1021/ol800548t

    Article  CAS  PubMed  Google Scholar 

  83. Yatusmonji, Y., Ishida, Y., Tsubouchi, A., and Takeda, T., Org. Lett., 2007, vol. 9, p. 4603. doi https://doi.org/10.1021/ol702122d

    Article  CAS  Google Scholar 

  84. Zolfigol, M.A., Mohammadpoor-Baltork, I., Habibi, D., Mirjalili, B.F., and Bamoniri, A., Tetrahedron Lett., 2003, vol. 44, p. 8165. doi https://doi.org/10.1016/j.tetlet.2003.09.036

    Article  CAS  Google Scholar 

  85. Iwanami, K. and Oriyama, T., Chem. Lett., 2004, vol. 33, p. 1324. doi https://doi.org/10.1246/cl.2004.1324

    Article  CAS  Google Scholar 

  86. Savela, R. and Leino, R., Synthesis, 2015, vol. 47, p. 1749. doi https://doi.org/10.1055/s-0034-1380155

    Article  CAS  Google Scholar 

  87. Kalutharage, N. and Yi, C.S., Org. Lett., 2015, vol. 17, p. 1778. doi https://doi.org/10.1021/acs.orglett.5b00553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gooßen, L.J. and Linder, C., Synlett, 2006, p. 3489. doi https://doi.org/10.1055/s-2006-956484

  89. Lopez, F., Ohmura, T., and Hartwig, J.F., J. Am. Chem. Soc., 2003, vol. 125, p. 3426. doi https://doi.org/10.1021/ja029790y

    Article  CAS  PubMed  Google Scholar 

  90. Leitner, A., Shu, C., and Hartwig, J.F., Org. Lett., 2005, vol. 7, p. 1093. doi https://doi.org/10.1021/ol050029d

    Article  CAS  PubMed  Google Scholar 

  91. Ammann, S.E., Rice, G.T., and White, M.C., J. Am. Chem. Soc., 2014, vol. 136, p. 10834. doi https://doi.org/10.1021/ja503322e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Trend, R.M., Ramtohul, Y.K., Ferreira, E.M., and Stoltz, B., Angew. Chem., Int. Ed., 2003, vol. 42, p. 2892. doi https://doi.org/10.1002/anie.200351196

    Article  CAS  Google Scholar 

  93. Qian, H., Han, X., and Widenhoefer, R.A., J. Am. Chem. Soc., 2004, vol. 126, p. 9536. doi https://doi.org/10.1021/ja0477773

    Article  CAS  PubMed  Google Scholar 

  94. Yang, C.-G., Reich, N.W., Shi, Z., and He, C., Org. Lett., 2005, vol. 7, p. 4553. doi https://doi.org/10.1021/ol051065f

    Article  CAS  PubMed  Google Scholar 

  95. Dzudza, A. and Marks, T.J., Org. Lett., 2009, vol. 11, p. 1523. doi https://doi.org/10.1021/ol8029559

    Article  CAS  PubMed  Google Scholar 

  96. Murayama, H., Nagao, K., Ohmiya, H., and Sawamura, M., Org. Lett., 2015, vol. 17, p. 2039. doi https://doi.org/10.1021/acs.orglett.5b00758

    Article  CAS  PubMed  Google Scholar 

  97. Wolfe, J.P. and Rossi, M.A., J. Am. Chem. Soc., 2004, vol. 126, p. 1620. doi https://doi.org/10.1021/ja0394838

    Article  CAS  PubMed  Google Scholar 

  98. Fujino, D., Yorimitsu, H., and Osuka, A., J. Am. Chem. Soc., 2014, vol. 136, p. 6255. doi https://doi.org/10.1021/ja5029028

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, Z., Liu, C., Kinder, R.E., Han, X., Qian, H., and Widenhoefer, R.A., J. Am. Chem. Soc., 2006, vol. 128, p. 9066. doi https://doi.org/10.1021/ja062045r

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, G., Cui, L., Wang, Y., and Zhang, L., J. Am. Chem. Soc., 2010, vol. 132, p. 1474. doi https://doi.org/10.1021/ja909555d

    Article  CAS  PubMed  Google Scholar 

  101. Nordmann, G. and Buchwald, S.L., J. Am. Chem. Soc., 2003, vol. 125, p. 4978. doi https://doi.org/10.1021/ja034809y.

    Article  CAS  PubMed  Google Scholar 

  102. Ball, L.T., Green, M., Lloyd-Jones, G.C., and Russel, C.A., Org. Lett., 2010, vol. 12, p. 4724. doi https://doi.org/10.1021/ol1019162

    Article  CAS  PubMed  Google Scholar 

  103. Cui, D.-M., Yu, K.-R., and Zhang, C., Synlett, 2009, p. 1103. doi https://doi.org/10.1055/s-0028-1088158

  104. Veenboer, R.M.P., Dupuy, S., and Nolan, S.P., ACS Catal., 2015, vol. 5, p. 1330. doi https://doi.org/10.1021/cs501976s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dick, A.R., Hull, K.L., and Sanford, M.S., J. Am. Chem. Soc., 2004, vol. 126, p. 2300. doi https://doi.org/10.1021/ja031543m

    Article  CAS  PubMed  Google Scholar 

  106. Desai, L.V., Malik, H.A., and Sanford, M.S., Org. Lett., 2006, vol. 8, p. 1141. doi https://doi.org/10.1021/ol0530272

    Article  CAS  PubMed  Google Scholar 

  107. Wang, G.-W. and Yuan, T.-T., J. Org. Chem., 2010, vol. 75, p. 476. doi https://doi.org/10.1021/jo902139b

    Article  CAS  PubMed  Google Scholar 

  108. Jiang, T.-S. and Wang, G.-W., J. Org. Chem., 2012, vol. 77, p. 9504. doi https://doi.org/10.1021/jo301964m

    Article  CAS  PubMed  Google Scholar 

  109. Shi, S. and Kuang, C., J. Org. Chem., 2014, vol. 79, p. 6105. doi https://doi.org/10.1021/jo5008306

    Article  CAS  PubMed  Google Scholar 

  110. Khusnutdinov, R.I., Bayguzina, A.R., Gallyamova, L.I., and Dzhemilev, U.M., Pet. Chem., 2012, vol. 52, p. 261. doi https://doi.org/10.1134/S0965544112040044

    Article  CAS  Google Scholar 

  111. Dzhemilev, U.M., Khusnutdinov, R.I., Baiguzina, A.R., and Gallyamova, L.I., RU Patent no. 2447054, 2012; Chem. Abstr., 2012, vol. 156, no. 505198.

  112. Khusnutdinov, R.I., Baiguzina, A.R., and Dzhemilev, U.M., Organicheskie i neorganicheskie gipogalogenity v organicheskom sinteze (Organic and Inorganic Hypohalites in Organic Synthesis), Moscow: Nauka, 2016, p. 277.

    Google Scholar 

  113. Khusnutdinov, R.I., Baiguzina, A.R., and Dzhemilev, U.M., Russ. J. Org. Chem., 2017, vol. 53, p. 1113. doi https://doi.org/10.1134/S1070428017080012

    Article  CAS  Google Scholar 

  114. Khusnutdinov, R.I., Schadneva, N.A., Bayguzina, A.R., Lavrentieva, Yu.Yu., Dzhemilev, U.M., Burangulova, R.Yu., and Smirnov, A.A., Arkivoc, 2004, part (xi), p. 53. doi https://doi.org/10.3998/ark.5550190.0005.b08

  115. Khusnutdinov, R.I., Shchadneva, N.A., Baiguzina, A.R., Mukminov, R.R., Mayakova, Yu.Yu., Smirnov, A.A., and Dzhemilev, U.M., Pet. Chem., 2008, vol. 48, p. 471. doi https://doi.org/10.1134/S0965544108060121

    Article  Google Scholar 

  116. Khusnutdinov, R.I., Baiguzina, A.R., Mukminov, R.R., and Dzhemilev, U.M., Russ. J. Appl. Chem., 2009, vol. 82, p. 340. doi https://doi.org/10.1134/S1070427209020335

    Article  CAS  Google Scholar 

  117. Khusnutdinov, R.I., Baiguzina, A.R., Mukminov, R.R., Akhmetov, I.V., Gubaidullin, I.M., Spivak, S.I., and Dzhemilev, U.M., Russ. J. Org. Chem., 2010, vol. 46, p. 1053. doi https://doi.org/10.1134/S1070428010070158

    Article  CAS  Google Scholar 

  118. Khusnutdinov, R.I., Baiguzina, A.R., and Mukminov, R.R., Russ. J. Org. Chem., 2010, vol. 46, p. 1399. doi https://doi.org/10.1134/S1070428010090228

    Article  CAS  Google Scholar 

  119. Khusnutdinov, R.I., Baiguzina, A.R., and Mukminov, R.R., Russ. J. Org. Chem., 2011, vol. 47, p. 437. doi https://doi.org/10.1134/S1070428011030195

    Article  CAS  Google Scholar 

  120. Khusnutdinov, R.I., Bayguzina, A.R., and Mukminov, R.R., Russ. Chem. Bull., Int. Ed., 2013, vol. 62, p. 93. doi https://doi.org/10.1007/s11172-013-0012-6

    Article  CAS  Google Scholar 

  121. Khusnutdinov, R.I., Bayguzina, A.R., Denisov, K.Y., and Dzhemilev, U.M., Mendeleev Commun., 2015, vol. 25, p. 219. doi https://doi.org/10.1016/j.mencom.2015.05.021

    Article  CAS  Google Scholar 

  122. Bayguzina, A.R., Erokhina, I.S., and Khusnutdinov, R.I., Russ. J. Org. Chem., 2017, vol. 53, p. 359. doi https://doi.org/10.1134/S1070428017030071

    Article  CAS  Google Scholar 

  123. Baiguzina, A.R., Erokhina, I.S., and Khusnutdinov, R.I., Russ. J. Gen. Chem., 2017, vol. 87, p. 389. doi https://doi.org/10.1134/S1070363217030057

    Article  CAS  Google Scholar 

  124. Bayguzina, A.R., Tarisova, L.I., and Khusnutdinov, R.I., Russ. J. Gen. Chem., 2018, vol. 88, p. 208. doi https://doi.org/10.1134/S1070363218020056

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under financial support by the Russian Foundation for Basic Research (project no. 17-43-020 155 p_a), as well as in the framework of state assignment no. AAAA-A19-119022290009-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Khusnutdinov.

Additional information

Conflict of Interests

The authors declare no conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 7, pp. 991–1023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinov, R.I., Bayguzina, A.R. Metal Complex Catalysis in the Synthesis of Ethers. Russ J Org Chem 55, 903–932 (2019). https://doi.org/10.1134/S1070428019070017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019070017

Keywords

Navigation