Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 6, pp 782–791 | Cite as

Alkylation of 6-Polyfluoroalkyl-2-thiouracils with Haloalkanes

  • O. G. Khudina
  • A. E. Ivanova
  • Ya. V. Burgart
  • M. G. Pervova
  • T. V. Shatunova
  • S. S. Borisevich
  • S. L. Khursan
  • V. I. SaloutinEmail author
Article
  • 14 Downloads

Abstract

The structure of 6-polyfluoroalkyl-2-thiouracils and reactivity of nucleophilic centers in their molecules were analyzed by quantum chemical calculations. According to the experimental data, methylation of 6-polyfluoroalkyl-2-thiouracils with methyl iodide initially gives 2-methylsulfanyl-substituted pyrimidin-4-one and then S,N3- and S,O-dimethyl derivatives. The optimal conditions for the selective formation of the S, N3- isomer were heating in tert-butyl alcohol in the presence of cesium carbonate as a base. Ethylation of 6-polyfluoroalkyl-2-thiouracils afforded approximately equal amounts of S,N3- and S,O-dimethyl derivatives. S,N3-Dimethyl-substituted pyrimidines in boiling ethanol in the presence of potassium carbonate were converted into uracil potassium salts as a result of nucleophilic substitution of the methylsulfanyl group by ethoxy and subsequent dealkylation of the latter.

Keywords

6-polyfluoroalkyl-2-thiouracils methylation ethylation quantum chemical calculations nucleophilic substitution dealkylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was performed using the equipment of the “Spectroscopy and Analysis of Organic Compounds” joint center. Quantum chemical calculations were carried out on a cluster supercomputer at the Ufa Institute of Chemistry (Ufa Federal Research Center, Russian Academy of Sciences).

Funding

This study was performed in the framework of state assignment no. AAAA-A19-119011790132-7 and under financial support by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. AAAA-A17-117011910028-7).

References

  1. 1.
    Lagoja, I.M., Chem. Biodiversity, 2005, vol. 2, p. 1. doi  https://doi.org/10.1002/cbdv.200490173 CrossRefGoogle Scholar
  2. 2.
    Verma, A., Sahu, L., Chaudhary, N., Dutta, T., Dewangan, D., and Tripathi, D.K., Asian J. Biochem. Pharm. Res., 2012, vol. 2, p. 1.Google Scholar
  3. 3.
    Choi, H.-J., Yu, S.-T., Lee, K.-I., Choi, J.-K., Chang, B.-Y., Kim, S.-Y., Ko, M.-H., Song, H.-O., and Park, H., Exp. Parasitol., 2014, vol. 143, p. 24. doi  https://doi.org/10.1016/j.exppara.2014.05.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Abdullah, M.E., Aboul-Enein, H.Y., Hassan, M.M.A., and Taha, S.A., Proc. Int. Symp. Appl. Technol. Ioniz. Radiat., 1983, vol. 1, p. 531; Chem. Abstr., 1984, vol. 100, p. 17232.Google Scholar
  5. 5.
    Attardo, G., Tripathy, S., and Gagnon, M., Int. Patent Appl. no. WO2010 132999.Google Scholar
  6. 6.
    Gullpelli, K., Bhaskar, P., Muralikrishna, T., and Brahmeshwari, G., Int. J. Pharm. Biol. Sci., 2014, vol. 4, p. 59.Google Scholar
  7. 7.
    Lokwani, D., Azad, R., Sarkate, A., Reddanna, P., and Shinde, D., Bioorg. Med. Chem., 2015, vol. 23, p. 4533. doi  https://doi.org/10.1016/j.bmc.2015.06.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Nugent, R.A., Schlachter, S.T., Murphy, M.J., Cleek, G.J., Poel, T.J., Wishka, D.G., Graber, D.R., Yagi, Y., Keiser, B.J., Olmsted, R.A., Kopta, L.A., Swaney, S.M., Poppe, S.M., Morris, J., Tarpley, W.G., and Thomas, R.C., J. Med. Chem., 1998, vol. 41, p. 3793. doi  https://doi.org/10.1021/JM9800806 CrossRefPubMedGoogle Scholar
  9. 9.
    Smart, B.E., J. Fluorine Chem., 2001, vol. 109, p. 3. doi  https://doi.org/10.1016/S0022-1139(01)00375-X CrossRefGoogle Scholar
  10. 10.
    Khudina, O.G., Ivanova, A.E., Burgart, Ya.V., Slepukhin, P.A., Saloutin, V.I., Chupakhin, O.N., and Kravchenko, M.A., Russ. Chem. Bull., Int. Ed., 2013, vol. 62, p. 1060. doi  https://doi.org/10.1007/s11172-013-0142-x CrossRefGoogle Scholar
  11. 11.
    Ringom, R., Axen, E., Uppenberg, J., Lundback, T., Rondahld, L., and Barf, T., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 4449. doi  https://doi.org/10.1016/j.bmcl.2004.06.058 CrossRefPubMedGoogle Scholar
  12. 12.
    Huang, T.H., Tu, H.Y., Aibibu, Z., Hou, C.J., and Zhang, A.D., Arkivoc, 2011, part (ii), p. 1. doi  https://doi.org/10.3998/ark.5550190.0012.201
  13. 13.
    Khudina, O.G., Burgart, Ya.V., and Saloutin, VI., Chem. Heterocycl. Compd., 2014, vol. 50, p. 856. doi  https://doi.org/10.1007/s10593-014-1539-7 CrossRefGoogle Scholar
  14. 14.
    Bergmann, E.D., Cohen, S., and Shahak, I., J. Chem. Soc., 1959, p. 3278. doi  https://doi.org/10.1039/jr9590003278
  15. 15.
    Gershon, H., Grefig, A.T., and Scala, A.A., J. Heterocycl. Chem., 1983, vol. 20, p. 219. doi  https://doi.org/10.1002/jhet.5570200145 CrossRefGoogle Scholar
  16. 16.
    Bhabak, K.P. and Mugesh, G., Chem. Eur. J., 2010, vol. 16, p. 1175. doi  https://doi.org/10.1002/chem.200902145 CrossRefPubMedGoogle Scholar
  17. 17.
    Erkin, A.V. and Krutikov, V.I., Russ. J. Gen. Chem., 2007, vol. 77, p. 124. doi  https://doi.org/10.1134/S1070363207010173 CrossRefGoogle Scholar
  18. 18.
    Senda, S. and Suzui, A., Chem. Pharm. Bull., 1958, vol. 6, p. 479. doi  https://doi.org/10.1248/cpb.6.479 CrossRefGoogle Scholar
  19. 19.
    Matsukawa, T. and Ohta, B., Yakugaku Zasshi, 1950, vol. 70, p. 134; Chem. Abstr., 1950, vol. 44, p. 30 180.CrossRefGoogle Scholar
  20. 20.
    Lee, H.-J., Kim, D.-H., Kim, T.-K., Yoon, Y.-A., Sim, J.-Y., Cha, M.-H., Jung, E.-J., Ahn, K.-K., and Lee, T.-A., Int. Patent Appl. no. WO 2012115478; Chem. Abstr., 2012, vol. 157, no. 438379.Google Scholar
  21. 21.
    Westaway, S.M., Preston, A.G.S., Barker, M.D., Brown, F., Brown, J.A., Campbell, M., Chung, C., Drewes, G., Eagle, R., Garton, N., Gordon, L., Haslam, C., Hayhow, T.G., Humphreys, P.G., Joberty, G., Katso, R., Kruidenier, L., Leveridge, M., Pemberton, M., Rioja, I., Seal, G.A., Shipley, T., Singh, O., Suckling, C.J., Taylor, J., Thomas, P., Wilson, D.M., Lee, K., and Prinjha, R.K., J. Med. Chem., 2016, vol. 59, p. 1370. doi  https://doi.org/10.1021/acs.jmedchem.5b01538 CrossRefPubMedGoogle Scholar
  22. 22.
    Dean, W.D. and Papadopoulos, E.P., J. Heterocycl. Chem., 1982, vol. 19, p. 1117. doi  https://doi.org/10.1002/jhet.5570190527 CrossRefGoogle Scholar
  23. 23.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision C.01, Wallingford CT: Gaussian, 2009.Google Scholar
  24. 24.
    Tao, J.M., Perdew, J.P., Staroverov, V.N., and Scuseria, G.E., Phys. Rev. Lett., 2003, vol. 91, article no. 146401. doi  https://doi.org/10.1103/PhysRevLett.91.146401
  25. 25.
    McLean, A.D. and Chandler, G.S., J. Chem. Phys., 1980, vol. 72, p. 5639. doi  https://doi.org/10.1063/1.438980 CrossRefGoogle Scholar
  26. 26.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, p. 2999. doi  https://doi.org/10.1021/cr9904009 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miller, W.H., Dessert, A.M., and Anderson, G.W., J. Am. Chem. Soc., 1948, vol. 70, p. 500. doi  https://doi.org/10.1021/ja01182a020 CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. G. Khudina
    • 1
  • A. E. Ivanova
    • 1
  • Ya. V. Burgart
    • 1
  • M. G. Pervova
    • 1
  • T. V. Shatunova
    • 1
  • S. S. Borisevich
    • 2
  • S. L. Khursan
    • 2
  • V. I. Saloutin
    • 1
    Email author
  1. 1.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ufa Institute of Chemistry, Ufa Research CenterRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations