Russian Journal of Organic Chemistry

, Volume 55, Issue 5, pp 707–715 | Cite as

Recognition and Sensing of Guanidine-containing Biomolecules in Aqueous Medium

  • Subrata JanaEmail author
  • Kishor Kumar Suryavanshi


A dicarboxylate-based fluorescent receptor has been synthesized for the recognition of the guanidinium ion and guanidine-containing biomolecules in aqueous medium to address the issue of biomolecular interaction. The acyclic receptor binds to guests in a 1: 2 mode due to the flexibility of its binding motifs. The host-guest binding behavior was studied by means of UV and fluorescence titration. The binding of the host with the guanidinium ion was found to be stronger than with the other guanidine-containing guests.

Key words

molecular recognition host-guest fluorescence sensor α,β-unsaturated carbonyl guanidinium ion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Subrata Jana thanks to MPCST, Govt. of Madhya Pradesh, India for financial support. Kishor Kumar Suryavanshi thanks to Indira Gandhi National Tribal University (Central University), Amarkantak, M.P., India for research fellowship.


  1. 1.
    (a) Fujisawa, K., Humbert-Droz, M., Letrun, R., Vauthey, E., Wesolowski, T.A., Sakai, N., and Matile, S., J. Am. Chem. Soc., 2015, vol. 137, p. 11047. (b) Wang, X., Sarycheva, O.V., Koivisto, B.D., McKie, A.H. and Hof, F., Org. Lett., 2008, vol. 10, p. 297.CrossRefPubMedGoogle Scholar
  2. 2.
    (a) Balakrishnan, S., Scheuermann, M. J., and Zondlo, N.J., ChemBioChem, 2012, vol. 13, p. 259. (b) Chen, H., Gu, L., Yin, Y., Koh, K., and Lee, J., Int. J. Mol. Sci., 2011, vol. 12, p. 2315.CrossRefPubMedGoogle Scholar
  3. 3.
    Guinovart, T., Hernandez-Alonso, D., Adriaenssens, L., Blondeau, P., Martinez-Belmonte, M., Rius, F.X., Andrade, F. J., and Ballester, P., Angew. Chem. Int. Ed., 2016, vol. 55, p. 2435.CrossRefGoogle Scholar
  4. 4.
    Bell, T.W., Khasanov, A.B., and Drew, M.G.B., J. Am. Chem. Soc., 2002, vol. 124, p. 14092.CrossRefPubMedGoogle Scholar
  5. 5.
    Fokkens, M., Schrader, T., and Klarner, F.-G., J. Am. Chem. Soc., 2005, vol. 127, p. 14415.CrossRefPubMedGoogle Scholar
  6. 6.
    Potocky, T.B., Silvius, J., Menon, A.K., and Gellman, S.H., ChemBioChem, 2007, vol. 8, p. 917.CrossRefPubMedGoogle Scholar
  7. 7.
    Schug, K.A. and Lindner, W., Chem. Rev., 2005, vol. 105, p. 67.CrossRefPubMedGoogle Scholar
  8. 8.
    Wender, P.A., Galliher, W.C., Goun, E.A., Jones, L.R., and Pillow, T.H., Adv. Drug Delivery Rev., 2008, vol. 60, p. 452.CrossRefGoogle Scholar
  9. 9.
    Mueller, N., Pasternak, A.O., Klaver, B., Cornelissen, M., Berkhout, B., and Das, A.T., J. Virol., 2018, vol. 92, p. e01855–17.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hammond, J.A., Zhou, L., Lamichhane, R., Chu, H.-Y., Millar, D.P., Gerace, L., and Williamson, J.R., J. Mol. Biol., 2018, vol. 430, p. 537.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee, S.D., Yu, K.L., Park, S.H., Jung, Y.M., Kim, M.J., and You, J.C., BMB Rep., 2018, vol. 51, p. 388.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    (a) Best, M.D., Tobey, S.L., and Anslyn, E.V., Coord. Chem. Rev., 2003, vol. 240, p. 3. (b) Leow, D., and Tan, C.H., Chem. Asian J., 2009, vol. 4, p. 488. (c) Blondeau, P., Segura, M., Prez-Fernndez, R., and de Mendoza, J., Chem. Soc. Rev., 2007, vol. 36, p. 198. (d)Schmuck, C., Coord. Chem. Rev., 2006, vol. 250, p. 3053.CrossRefGoogle Scholar
  13. 13.
    Gokel, G.W., Leevy, M., and Weber, M.E., Chem. Rev., 2004, vol. 104, p. 2723.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    (a) James, L.I., Beaver, J.E., Rice, N.W. and Waters, M.L., J. Am. Chem. Soc., 2013, vol. 135, p. 6450. (b) Zhou, X., Jin, X., Li, D., and Wu, X. Chem. Commun., 2011, vol. 47, p. 3921.CrossRefPubMedGoogle Scholar
  15. 15.
    Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., and Scherman, O.A., Chem. Rev., 2015, vol. 115, p. 12320.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen, H., Gu, L., Yin, Y., Koh, K., and Lee, J., Int. J. Mol. Sci., 2011, vol. 12, p. 2315.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Späth, A., and König, B., Beilstein J. Org. Chem., 2010, vol. 6, no. 32. doi 10.3762/bjoc.6.32; (b) Gersthagen, T., Schmuck, C., and Schrader, T. Supramol. Chem., 2010, vol. 22, p. 853.Google Scholar
  18. 18.
    (a) Oshovsky, G.V., Reinhoudt, D.N., and Verboom, W., Angew. Chem. Int. Ed., 2007, vol. 46, p. 2366. (b) Zhao, Y., Chem. Eur. J., 2018, vol. 24, p. 14001.CrossRefGoogle Scholar
  19. 19.
    So, S.M., Moozeh, K., Lough, A.J., and Chin, J., Angew. Chem. Int. Ed., 2014, vol. 53, p. 829.CrossRefGoogle Scholar
  20. 20.
    (a) Marcotte, N., Fery-Forgues, S., and Lavabre, D., J. Phys. Chem. A, 1999, vol. 103, p. 3163. (b) Marcotte, N., and Fery-Forgues, S., J. Chem. Soc., Perkin Trans. 2, 2000, p. 1711.CrossRefGoogle Scholar
  21. 21.
    The minimization of energy was carried out by MMX (PC MODEL by Serena Software)Google Scholar
  22. 22.
    (a) Connors K.A., Binding Constant: The Measurement of Molecular Complex Stability, New York: John Wiley & Sons, 1987. (b) Benesi, H. and Hildebrand, J.H., J. Am. Chem. Soc., 1949, vol. 71, p. 2703.Google Scholar
  23. 23.
    (a) Hargrove, A.E., Zhong, Z., Sessler, J.L., Anslyn, E.V., New J. Chem., 2010, vol. 34, p. 348. (b) Thordarson, P., Chem. Soc. Rev., 2011, vol. 40, p. 1305.CrossRefPubMedGoogle Scholar
  24. 24.
    Gel’man, N.E., Terent’eva, E.A., Shanina, T.M., Kipa-renko, L.M., and Rezl, V., Metody kolichestvennogo orga-nicheskogo elementnogo mikroanaliza (The Methods of Quantitative Organic Elemental Microanalysis), Moscow: Khimiya, 1987.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndira Gandhi National Tribal University (Central University)AmarkantakIndia

Personalised recommendations