Russian Journal of Organic Chemistry

, Volume 55, Issue 5, pp 686–693 | Cite as

Efficient Three-Component One-Pot Synthesis of 4H-Pyrans

  • J. Malviya
  • S. Kala
  • L. K. Sharma
  • R. K. P. SinghEmail author


Clean, practical, and efficient electrochemical synthesis of pharmaceutically relevant 4H-pyran derivatives by one-pot three-component combination of an aryl aldehyde, malononitrile, and a dicarbonyl compoundis developed. The synthesis is performed in ethanol with lithium perchlorate as a supporting electrolyte in an undivided cell on a platinum electrode under constant potential electrolysis conditions.


anodic oxidation electrogererated base Michael addition controlled potential electrolysis (CPE) cyclic voltammetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nefzi, A., Ostresh, J.M., and Houghten, R.A., Chem. Rev., 1997, vol. 97, p. 449.CrossRefPubMedGoogle Scholar
  2. 2.
    Evans, B.E., Rittle, K.E., Bock, M.G., Di Pardo, R.M., Freidinger, R.M., Whitter, W.L., Lundell, G.F., Veber, D.F., Anderson, P.S., Chang, R.S.L., Lotti, V.J., Cerino, D.J., Chen, T.B., Kling, P.J., Kunkel, K.A., Springer, J.P., and Hirshfield, J., J. Med. Chem., 1988, vol. 31, p. 2235. doi CrossRefPubMedGoogle Scholar
  3. 3.
    Poupaert, J. and Carato, P., Curr Med Chem., 2005, vol. 12, p. 877.CrossRefPubMedGoogle Scholar
  4. 4.
    Armstrong, R.W., Combs, A.P., Tempest, P.A., Brown, S.D., and Keating, T.A., Acc. Chem. Res., 1996, vol. 29, p. 123.CrossRefGoogle Scholar
  5. 5.
    Terret, N.K., Gardner, M., Gordon, D.W., and Kobylecki, R.J., Tetrahedron, 1995, vol. 51, p. 8135.CrossRefGoogle Scholar
  6. 6.
    Wender, P.A., Handy, S.T., and Wright, D.L., Chem. Ind., 1997, vol. 765, p. 767.Google Scholar
  7. 7.
    Trost, B.M., Angew. Chem. Int. Ed., 1995, vol. 34, p. 259.CrossRefGoogle Scholar
  8. 8.
    Mironov, M.A., QSAR Comb. Sci., 2006, vol. 25, p. 423.CrossRefGoogle Scholar
  9. 9.
    Martin, N., Pascual, C., Seoane, C., and Soto, J.L., Heterocycles, 1987, vol. 26, p. 2811.CrossRefGoogle Scholar
  10. 10.
    Adbel-Fattah, A.H., Hesien, A.M., Metwally, S.A., and Elnagdi, M.H., Liebigs Ann Chem., 1989, p. 585.Google Scholar
  11. 11.
    Quintela, J.M., Peinador, C., and Moreira, M.J., Tetrahedron, 1995, vol. 51, p. 5901.CrossRefGoogle Scholar
  12. 12.
    Srivastava, S., Batra, S., and Bhaduri, A.P., Indian J Chem Sect B, 1996, vol. 35B, p. 602.Google Scholar
  13. 13.
    Akiyoshi, A., Takashi, S., Naohisa, O., Yasuo, S., Motoniro, S., Junji, N., and Masayosh, K., PCT Int. Appl., JP2009179589 (A), 2009.Google Scholar
  14. 14.
    Kitamura, R.O.S.P., Romoff, M.C.M., Young, M.J., and Kato, J.H.G., Phytochem. 2006, vol. 67, p. 2398.CrossRefGoogle Scholar
  15. 15.
    Tangmouo, J.G., Meli, A.L., Komguem, J., Kuete, V., Ngounou, F.N., Lontsi, D., Beng, V.P., Choudhary, M.I., and Sondengam, B.L., Tetrahedron Lett., 2006, vol. 47, p. 3067. doi CrossRefGoogle Scholar
  16. 16.
    Cocco, M.T., Congiu, C., and Onnis, V., Bioorg. Med. Chem., 2003, vol. 11, p. 495.CrossRefPubMedGoogle Scholar
  17. 17. (a)
    Ballini, R., Bosica, G., Conforti, M.L., Maggi, R., Mazzacani, A., Righi, P., and Sartori, G., Tetrahedron, 2001, vol. 57, p. 1395.CrossRefGoogle Scholar
  18. 17.(b)
    Pratap, U.R., Jawale, D.V., Netankar, P.D., and Mane, R.A., Tetrahedron Lett., 2011, vol. 52, p. 5817.CrossRefGoogle Scholar
  19. 18. (a)
    Li, Y., Chen, H., Shi, C., Shi, D., and Ji, S., J. Comb. Chem., 2010, vol. 12, p. 231.CrossRefPubMedGoogle Scholar
  20. 18.(b)
    Devi, I. and Bhuyan, P.J., Tetrahedron Lett., 2004, vol. 45, p. 8625.CrossRefGoogle Scholar
  21. 18.(c)
    Akbarzadeh, T., Rafinejad, A., Mollaghasem, J.M., and Safari, M., Arch. Pharm. Chem. Life Sci., 2012, vol. 345, p. 386.CrossRefGoogle Scholar
  22. 19. (a)
    Mahmoodi, A., Aliabadi, A., Emami, S., and Safavi, M., Chem. Life Sci., 2010, vol. 343, p. 41.Google Scholar
  23. 19. (b)
    Paul, S., Bhattacharyya, P., and Das, A.R., Tetrahedron Lett., 2011, vol. 52, p. 4636.CrossRefGoogle Scholar
  24. 19.(c)
    Bhattacharyya, P., Prodhan, K., Paul, S., and Das, A.R., Tetrahedron. Lett., 2012, vol. 53, p. 4687.CrossRefGoogle Scholar
  25. 19.(d)
    Daqing, Shi., Wu, Nan., and Qiya, Zhuang., Chin. J. Chem., 2009, vol. 27, p. 167.Google Scholar
  26. 20. (a)
    Tabatabaeian, K., Heidari, H., Mamaghani, M., and Mahmoodi, N.O., Appl. Organomet. Chem., 2012, vol. 26, p. 56.CrossRefGoogle Scholar
  27. 20.(b)
    Saeedi, M., Tetrahedron, 2010, vol. 66, p. 5345.CrossRefGoogle Scholar
  28. 20.(c)
    Guihuang, X., Liu, J., Den, J., Wang, T., Chen, W., and Zeng, B., Tetrahedron, 2011, vol. 67, p. 6202.CrossRefGoogle Scholar
  29. 20.(d)
    Banerjee, S., Horn, A., Khatri, H., and Sereda, G., Tetrahedron Lett., 2011, vol. 52, p. 1878.CrossRefGoogle Scholar
  30. 21. (a)
    Anastas, P. and Eghbali, N., Chem. Soc. Rev., 2010, vol. 39, p. 301.CrossRefPubMedGoogle Scholar
  31. 21.(b)
    Ramachary, D.B. and Kishor, M., J. Org. Chem., 2007, vol. 72, p. 5056.CrossRefPubMedGoogle Scholar
  32. 21.(c)
    Ganem, B., Acc. Chem. Res., 2009, vol. 42, p. 463.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 21.(d)
    Balamurugan, K., Perumal, S., and Menendez, J.C., Tetrahedron, 2011, vol. 67, p. 3201.CrossRefGoogle Scholar
  34. 22. (a)
    Muschelknautz, C., Frank, W., and Muller, T., J. Org. Lett., 2011, vol. 13, p. 2556.CrossRefGoogle Scholar
  35. 22.(b)
    D’Souza, D., Rominger, M., Muller, F., Angew, T.J., Chem. Int. Ed., 2005, vol. 44, p. 153.CrossRefGoogle Scholar
  36. 22.(c)
    Hernandez, J.G., Eur. J. Org. Chem., 2010, vol. 75, 7107.CrossRefGoogle Scholar
  37. 22.(d)
    Li, S., Wang, J.X., Wen, X., and Ma, X., Tetrahedron, 2011, vol. 67, p. 849.CrossRefGoogle Scholar
  38. 23. (a)
    Singh, S., Sharma, L.K., Saraswat, A., Siddiqui, I.R., Kehri, H.K., Singh, R.K.P., RSC Adv., 2013, vol. 3, p. 4237.CrossRefGoogle Scholar
  39. 23.(b)
    Siddiqui, I.R., Srivastava, A., Shamim, S., Srivastava, A., Shireen, Waseem, M.A., Singh, R.K.P., Synlett, 2013, p. 2586.Google Scholar
  40. 24. (a)
    Upadhyay, A., Sharma, L.K., Singh, V.K., and Singh, R.K.P., Tetrahedron Lett., 2016.Google Scholar
  41. 24.(b)
    Singh, V.K., Sharma, L.K., Singh, R.K.P., Tetrahedron Lett., 2016, vol. 57, p. 407.CrossRefGoogle Scholar
  42. 24.(c)
    Sharma, L.K., Singh, S., Singh, VK., Singh, R.K.P., J. Indian Chem. Soc., 2016, vol. 93, p. 827.Google Scholar
  43. 24.(d)
    Sharma, L.K. Saraswat, A., Singh, S., Singh, R.K.P., Proceedings of NASI, 2015, vol. 85, p. 29.Google Scholar
  44. 25.
    Moshtaghi, Z.A., Eskandari, I., and Moghani, D., Chem. Sci. Trans., 2012, vol. 1, p. 91.CrossRefGoogle Scholar
  45. 26. (a)
    Ranu, B.C. and Banerjee, S., Indian J. Chem. Soc., 2008, vol. 47, p. 1108.Google Scholar
  46. 26.(b)
    Gurumurthi, S., Sundari, V., and Valliappan, R., Eur. J.Chem., 2009, vol. 6, p. 466.Google Scholar
  47. 26.(c)
    Yu, L.Q., Liu, F., You, Q.D., Org. prep. Proced. Int., 2009, vol. 41, p. 77.CrossRefGoogle Scholar
  48. 27. (a)
    Hasaninejad, A., Shekouhy M., Golzar N., Zare A., and Doroodmand M.M., Appl. Catal. A, 2011, vol. 402, p. 11.CrossRefGoogle Scholar
  49. 27.(b)
    Piao M.Z., Imafuku K., Tetrahedron Lett., 1997, vol. 38, p. 5301.CrossRefGoogle Scholar
  50. 27.(c)
    Stoyanov, E.V., Ivanov, I.C., Heber D.S., Molecules, 2000, vol. 5, p. 19.CrossRefGoogle Scholar
  51. 28. (a)
    Kumar, D., Reddy, V.B., Sharad, U., Dube, and Kapur, S., Eur. J. Med. Chem, 2009, vol. 44, p. 3805.CrossRefPubMedGoogle Scholar
  52. 28.(b)
    Peng Y., Song G., and Huang F., Monatsherfte fur Chemie, 2005, vol. 136, p. 727.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • J. Malviya
    • 1
  • S. Kala
    • 1
  • L. K. Sharma
    • 1
  • R. K. P. Singh
    • 1
    Email author
  1. 1.Electrochemical Laboratory of Green Synthesis, Department of ChemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations