Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 5, pp 662–669 | Cite as

Quantum-chemical Study of the Mechanisms of Organic Reactions: VIII. On the Reaction of Ethane-1,2-dithiol with 1,3-Dichlorobut-2-ene in the Hydrazine Hydrate–KOH System

  • E. A. ChirkinaEmail author
  • N. A. Korchevin
  • I. B. Rosenzweig
  • L. B. Krivdin
Article
  • 14 Downloads

Abstract

A mechanism of the reaction of 1,3-dichlorobut-2-ene with 1,2-ethanedithiol in the hydrazine hydrate–KOH system is proposed on the basis of the results of DFT calculations at the В3LYP/6-311++G(d,p) level of theory. It is shown that this reaction involves several consecutive stages, including the nucleophilic substitution of the chlorine atom on the sp3-carbon atom by a sulfur atom (SN2 mechanism) to form a monosubstitution product, which is dehydrochlorinated under the action of alkali by the bimolecular mechanism E2 to form an acetylene intermediate. The latter undergoes ring closure via the intramolecular nucleophilic attack of the free thiolate group on the β-carbon atom of the acetylene fragment, yielding the final dithiane derivative.

Keywords

quantum chemical study density functional theory nucleophilic substitution halogen-containing electrophiles 1,3-dichlorobut-2-ene ethane1,2-dithiol 2-ethylidene-1,4-dithiane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chirkina, E.A., Krivdin, L.B., Levanova, E.P., Korchevin, N.A., and Rozentsveig, I.B., Russ J. Org. Chem., 2018, vol. 53, p. 1434.]doi  https://doi.org/10.1134/S1070428018100020 Google Scholar
  2. 2.
    Chirkina, E.A., Levanova, E.P., and Krivdin, L.B., Russ J. Org. Chem., 2017, vol. 53, p. 986. doi  https://doi.org/10.1134/S1070428017070053 CrossRefGoogle Scholar
  3. 3.
    Poluchenie i svoistva organicheskikh soedinenii sery (Synthesis and Properties of Organic Sulfur Compounds), Belen’kii, L.I., Ed., Moscow: Khimiya, 1998.Google Scholar
  4. 4.
    Deryagina, E.N., Korchevin, N.A., and Papernaya, L.K., Russ J. Gen. Chem., 1997, vol. 67, p. 866.Google Scholar
  5. 5.
    Koval’, I.V., Russ Chem. Rev., 1994, vol. 63, p. 323. doi 10.1070/RC1994v063n04ABEH000087CrossRefGoogle Scholar
  6. 6.
    Rozentsveig, I.B., Nikonova, V.S., Levanova, E.P., and Korchevin, N.A., Russ J. Org. Chem., 2016, vol. 52, p. 1264. doi  https://doi.org/10.1134/S1070428016090025 CrossRefGoogle Scholar
  7. 7.
    Nikonova, V.S., Levanova, E.P., Korchevin, N.A., Ushakov, I.A., Vashenko, A.V., and Rozentsveig, I.B., J. Mol. Struct., 2018, vol. 1153, p. 28. doi  https://doi.org/10.1016/j.molstruc.2017.09.121 CrossRefGoogle Scholar
  8. 8.
    Shimizu, T., Komatsuzaki, S., and Hirabayashi, K., Heteroatom Chem., 2011, vol. 22, p. 287. doi 10.1002/hc.20678CrossRefGoogle Scholar
  9. 9.
    Oshima, K., Yamamoto, H., and Nozaki, H., Bull. Chem. Soc. Jpn., 1975, vol. 40, p. 1567. doi  https://doi.org/10.1246/bcsj.48.885 CrossRefGoogle Scholar
  10. 10.
    Carlson, R.G. and Mardis, W.S., J. Org. Chem., 1975, vol. 40, p. 817. doi  https://doi.org/10.1021/jo00894a042 CrossRefGoogle Scholar
  11. 11.
    Corey, E.J. and Nayori, R., Tetrahedron Lett., 1970, vol. 11, p. 311. doi 10.1016/S0040-4039(00)61816-6CrossRefGoogle Scholar
  12. 12.
    Levanova, E.P., Nikonova, V.C., Grabel’nykh, V.A., Russavskaya, N.V., Chirkina, E.A., Albanov, A.I., Rozentsveig, I.B., and Korchevin, N.A., Russ J. Org. Chem., 2018, vol. 54, p. 1754. doi  https://doi.org/10.1134/S0514749218120026 CrossRefGoogle Scholar
  13. 13.
    Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., Int. Ed., 2005, vol. 54, p. 820. doi  https://doi.org/10.1007/s11172-005-0329-x CrossRefGoogle Scholar
  14. 14.
    Berne, B.J., Tuckerman, M., and Martyna, G., J. Chem. Phys., 1991, vol. 94, p. 6811. doi 10.1063/1.460259CrossRefGoogle Scholar
  15. 15.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox D.J., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  16. 16.
    González, C. and Schlegel, H.B., J. Phys. Chem., 1990, vol. 94, p. 5523. doi  https://doi.org/10.1021/j100377a021 CrossRefGoogle Scholar
  17. 17.
    González, C. and Schlegel, H.B., J. Chem. Phys., 1991, vol. 95, p. 5853. doi 10.1063/1.461606CrossRefGoogle Scholar
  18. 18.
    Levanova, E.P., Nikonova, B.C., Grabel’nykh, V.A., Russavskaya, N.V., Alanov, A.I., Rosentsveig, I.B., and Korchevin, N.A., Russ. J. Org. Chem., 2016, vol. 52, p. 615. doi  https://doi.org/10.1134/S1070428016050018 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Chirkina
    • 1
    • 2
    Email author
  • N. A. Korchevin
    • 1
    • 2
  • I. B. Rosenzweig
    • 1
  • L. B. Krivdin
    • 1
    • 2
  1. 1.Favorskii Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Angarsk State Technical UniversityAngarsk, Irkutskaya oblastRussia

Personalised recommendations