Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 5, pp 620–632 | Cite as

Sm-Catalyzed Synthesis and Biological Activity of Acyclic and Cyclic Azadiperoxides

  • N. N. MakhmudiyarovaEmail author
  • R. Sh. Rakhimov
  • T. V. Tyumkina
  • E. S. Meshcheryakova
  • A. G. Ibragimov
  • U. M. Dzhemilev
Article

Abstract

Acyclic diaminodiperoxides and cyclic azadiperoxides are synthesized by the reaction of 1,1-bis-(hydroperoxy)cycloalkanes with formaldehyde and primary arylamines in the presence of Sm-containing catalysts [SmCl3·6H2O, Sm(NO3)3·6H2O, SmCl3/γ-Al2O3, and Sm(NO3)3/γ-Al2O3]. The chemoselectivity of this three-component reaction depends on the position of the substituent (F,Cl) in the phenyl ring of the primary arylamines. Signals of the cyclic aminoperoxides were assigned considering the conformation dynamics of the tetraoxazocane cycle with two rigid peroxide bonds. The structure of the acyclic diaminodiperoxides was reliably determined by X-ray diffraction analysis. The synthesized acyclic diaminodiperoxides were found to exhibit anticancer activity.

Keywords

acyclic diaminodiperoxides cyclic azadiperoxides arylamines catalysis heterocyclization chemoselectivity conformational analysis X-ray diffraction analysis anticancer activity. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Structural studies were performed using unique equipment of the Agidel Center for Collective Use. The APCI mass spectra were registered at the Khimiya Center for Collective Use, Ufa Research Center, Russian Academy of Sciences.

References

  1. 1.
    Amewu, R.K., Chadwick, J., Hussain, A., Panda, S., Rinki, R., Janneh, O., Ward, S.A., Miguel, C., Burrell-Saward, H., Vivas, L., and O Neill, P.M., Bioorg. Med. Chem., 2013, vol. 21, p. 7392. doi  https://doi.org/10.1016/j.bmc.2013.09.047 CrossRefPubMedGoogle Scholar
  2. 2.
    Tang, Y., Dong, Y., Karle, J.M., DiTusa, C.A., and Vennerstrom, J.L., J. Org. Chem., 2004, vol. 69, p. 6470. doi  https://doi.org/10.1021/jo040171c CrossRefPubMedGoogle Scholar
  3. 3.
    Dong, Y., Chollet, J., Matile, H., Charman, S.A., Chiu, F.C.K., Charman, W.N., Scorneaux, B., Urwyler, H., Tomas, J.S., Scheurer, C., Snyder, C., Dorn, A., Wang, X., Karle, J.M., Tang, Y., Wittlin, S., Brun, R., and Vennerstrom, J.L., J. Med. Chem., 2005, vol. 48, p. 4953. doi  https://doi.org/10.1021/jm049040u CrossRefPubMedGoogle Scholar
  4. 4.
    Dong, Y., Tang, Y., Chollet, J., Matile, H., Wittlin, S., Charman, S.A., Charman, W.N., Tomas, J.S., Scheurer, C., Snyder, C., Scorneaux, B., Bajpai, S., Alexander, S.A., Wang, X., Padmanilayam, M., Cheruku, S.R., Brun, R., and Vennerstrom, J.L., Bioorg. Med. Chem., 2006, vol. 14, p. 6368. doi  https://doi.org/10.1016/j.bmc.2006.05.041 CrossRefPubMedGoogle Scholar
  5. 5.
    Tang, Y., Dong, Y., Wittlin, S., Charman, S.A., Chollet, J., Chiu, F.C.K., Charman, W.N., Matile, H., Urwyler, H., Dorn, A., Bajpai, S., Wang, X., Padmanilayam, M., Karle, J.M., Brun, R., and Vennerstrom, J.L., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 1260. doi  https://doi.org/10.1016/j.bmcl.2006.12.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Zheng, W., Wojtas, L., and Antilla, J.C., Angew Chem., Int Ed., 2010, vol. 49, p. 6589. doi  https://doi.org/10.1002/anie.201002972 CrossRefGoogle Scholar
  7. 7.
    Blumenthal, H. and Liebscher, J., Arkivoc, 2009, vol. xi, p. 204. doi  https://doi.org/10.3998/ark.5550190.0010.b18 Google Scholar
  8. 8.
    Kienle, M., Argyrakis, W., Baro, A., and Laschat, S., Tetrahedron Lett., 2008, vol. 49, p. 1971. doi  https://doi.org/10.1016/j.tetlet.2008.01.090 CrossRefGoogle Scholar
  9. 9.
    Rebek, J. and McCready, R., J. Am. Chem Soc., 1980, vol. 102, p. 5602. doi  https://doi.org/10.1021/ja00537a033 CrossRefGoogle Scholar
  10. 10.
    Rebek, J., Heterocycles, 1981, vol. 15, p. 517. doi  https://doi.org/10.3987/S-1981-01-0517 CrossRefGoogle Scholar
  11. 11.
    Schmidt, U. and Hausler, J., Angew. Chem., Int. Ed., 1976, vol. 15, p. 497. doi  https://doi.org/10.1002/anie.197604971 CrossRefGoogle Scholar
  12. 12.
    Casteel, D.A., Nat. Prod. Rep., 1999, vol. 16, p. 55. doi  https://doi.org/10.1039/A705725C CrossRefGoogle Scholar
  13. 13.
    Chung, L.W., Hayashi, S., Lundberg, M., Nakatsu, T., Kato, H., and Morokuma, K., J. Am. Chem. Soc., 2008, vol. 130, p. 12880. doi  https://doi.org/10.1021/ja8052464 CrossRefPubMedGoogle Scholar
  14. 14.
    Oliveira, R., Guedes, R.C., Meireles, P., Albuquerque, I.S., Goncalves, L.M., Pires, E., Bronze, M.R., Gut, J., Rosenthal, P.J., Prudencio, M., Moreira, R., O. Neill, P.M., and Lopes, F., J. Med. Chem., 2014, vol. 57, p. 4916. doi  https://doi.org/10.1021/jm5004528 CrossRefPubMedGoogle Scholar
  15. 15.
    Makhmudiyarova, N.N., Khatmullina, G.M., Rakhimov, R.Sh., Meshcheryakova, E.S., Ibragimov, A.G., and Dzhemilev, U.M., Tetrahedron, 2016, vol. 72, p. 3277. doi  https://doi.org/10.1016/j.tet.2016.04.055 CrossRefGoogle Scholar
  16. 16.
    Tyumkina, T.V., Makhmudiyarova, N.N., Kiyamutdinova, G.M., Meshcheryakova, E.S., Bikmukhametov, K.Sh., Abdullin, M.F., Khalilov, L.M., Ibragimov, A.G., and Dzhemilev, U.M., Tetrahedron, 2018, vol. 74, p. 1749. doi  https://doi.org/10.1016/j.tet.2018.01.045 CrossRefGoogle Scholar
  17. 17.
    Makhmudiyarova, N.N., Khatmullina, G.M., Rakhimov, R.Sh., Ibragimov, A.G., and Dzhemilev, U.M., Arkivoc, 2016, vol. v, p. 427. doi  https://doi.org/10.24820/ark.5550190.p009.565 CrossRefGoogle Scholar
  18. 18.
    Giumanini, A.G., Verardo, G., Zangrando, E., and Lassiani, L., Z. Prakt. Chem. (Leipzig), 1987, vol. 329, p. 1087. doi  https://doi.org/10.1002/prac.19873290619 CrossRefGoogle Scholar
  19. 19.
    Alley, M.C., Scudiero, D.A., Monks, P.A., Hursey, M.L., Czerwinski, M.J., Fine, D.L., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., and Boyd, M.R., Cancer Res., 1988, vol. 48, p. 589.PubMedGoogle Scholar
  20. 20.
    Grever, M.R., Schepartz, S.A., and Chabner, B.A., Semin Oncol., 1992, vol. 19, p. 622.PubMedGoogle Scholar
  21. 21.
    Boyd, M.R. and Paull, K.D., Drug. Dev. Res., 1995, vol. 34, p. 91. doi  https://doi.org/10.1002/ddr.430340203 CrossRefGoogle Scholar
  22. 22.
    Shoemaker, R.H., Nat. Rev., 2006, vol. 6, p. 813. doi  https://doi.org/10.1038/nrc1951 CrossRefGoogle Scholar
  23. 23.
    Weinstein, J.N., Myers, T.G., O. Connor, P.M., Friend, S.H., Fornace, A.J.Jr., Kohn, K.W., Fojo, T., Bates, S.E., Rubinstein, L.V., Anderson, N.L., Buolamwini, J.K., van Osdol, W.W., Monks, A.P., Scudiero, D.A., Sausville, E.A., Zaharevitz, D.W., Bunow, B., Viswanadhan, V.N., Johnson, G.S., Wittes, R.E., and Paull, K.D., Science, 1997, vol. 5298, p. 343. doi  https://doi.org/10.1126/science.275.5298.343 CrossRefGoogle Scholar
  24. 24.
    Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., and Boyd, M.J., Nat. Cancer. Inst., 1991, vol. 83, p. 757. doi  https://doi.org/10.1093/jnci/83.11.757 CrossRefGoogle Scholar
  25. 25.
    Technologies A, CrysAlis PRO, 2012, Yarnton, Oxfordshire, England.Google Scholar
  26. 26.
    Sheldrick, G.M., Acta Cryst., 2008, vol. A64, p. 112. doi  https://doi.org/10.1107/S0108767307043930 CrossRefGoogle Scholar
  27. 27.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E. Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.Google Scholar
  28. 28.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  29. 29.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785. doi  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  30. 30.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623. doi  https://doi.org/10.1021/j100096a001 CrossRefGoogle Scholar
  31. 31.
    Wolf, S.K. and Ziegler, T., J. Chem. Phys., 1998, vol. 109, p. 895. doi  https://doi.org/10.1063/1.476630 CrossRefGoogle Scholar
  32. 32.
    Zhurko, G.A. and Zhurko, D.A., ChemCraft, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. N. Makhmudiyarova
    • 1
    Email author
  • R. Sh. Rakhimov
    • 1
  • T. V. Tyumkina
    • 1
  • E. S. Meshcheryakova
    • 1
  • A. G. Ibragimov
    • 1
  • U. M. Dzhemilev
    • 1
  1. 1.Institute of Petrochemistry and CatalysisRussian Academy of SciencesUfa, Republic of BashkortostanRussia

Personalised recommendations