Skip to main content
Log in

Cascade Synthesis of 2-Azafluorene, Azocine, and Azabicyclononane Derivatives by Reaction of Activated Acetylenes with Some β-Amino Ketones

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Double Mannich bases obtained from α-indanone and α-tetralone contain a bis-β-amino ketone fragment and are promising intermediate compounds for the synthesis of nitrogen heterocycles via reactions with dimethyl acetylenedicarboxylate and methyl propiolate. The products of these reactions are determined by the activated acetylene structure. The reaction begins with attack of the activated acetylenic compound on the tertiary nitrogen atom of the Mannich base to give 1,3-zwitterionic intermediate. The subsequent domino reaction is driven by neutralization of the charge on the nitrogen atom through formation and/or rupture of several C–C bonds. Intramolecular attack of the negatively charged center of the 1,3-zwitterion derived from the indanone base and dimethyl acetylenedicarboxylate on the carbonyl carbon atom of the indanone fragment is followed by domino process, leading to the formation of dimethyl 2-methyl-1,2-dihydro-9H-indeno[2,1-c]-pyridine-3,4-dicarboxylate. The reaction of the same Mannich base with methyl propiolate involves 1,3-sigma-tropic rearrangement with neutralization of the positive charge on the nitrogen atom in the intermediate structure and negative charge transfer to the carbonyl oxygen atom. Next follows aldolization/crotonization with the second β-amino carbonyl fragment to produce methyl 2′-methyl-1-oxo-1,1′,2′,3,5′,11′-hexahydrospiro-[indene-2,6′-indeno[2,1-c]azocine]-4′-carboxylate. One more reaction direction leading to the formation of linear enamines via intramolecular proton migration from the indan fragment to the C-anionic center in the 1,3-zwitterion with simultaneous elimination of 2-methylideneindan-1-one has been revealed by HPLC/MS analysis of both reaction mixtures. Such enamines, methyl 3-{methyl[(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amino}prop-2-enoate and dimethyl (2Z)-2-{methyl[(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-methyl]amino}but-2-enedioate, were isolated in the reactions of activated acetylenic compounds with the Mannich base derived from tetralone. Previously described synthesis of 1-azabicyclo[3.3.1]nonanes from Mannich bases has been reproduced, and detailed analysis of the reaction mixtures has revealed products resulting from elimination of one alkylaryl group from the zwitterionic intermediate. The formation of linear enamines, dimethyl (2Z)-2-[methyl(3-oxo-3-phenylpropyl)amino]but-2-enedioate and dimethyl (2Z)-2-{methyl-[3-oxo-3-(thiophen-2-yl)propyl]amino}but-2-enediate, suggests facile retro-aldol reaction of 3-aroyl-4-aryl-1-methylpiperidin-4-ols as the necessary step. PASS online predicted diverse biological activities of all newly synthesized compounds with a probability of 65–80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vatsuro, K.V. and Mishchenko, G.L., Imennye reaktsii v organicheskoi khimii (Name Reactions in Organic Chemistry), Moscow: Khimiya, 1976.

    Google Scholar 

  2. Hendrickson, J.B. and Rees, R., J. Am. Chem. Soc., 1961, vol. 83, p. 1250.

    Article  CAS  Google Scholar 

  3. Hendrickson, J.B., Rees, R., and Templeton, J.F., J. Am. Chem. Soc., 1964, vol. 86, p. 107.

    Article  CAS  Google Scholar 

  4. George, M.V., Khetan, S.K., and Gupta, R.K., Adv. Heterocycl. Chem., 1976, vol. 19, p. 279.

    Article  CAS  Google Scholar 

  5. Kostyanovskii, R.G., Samoilova, Z.E., and Zarifova, M., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1973, vol. 22, p. 1649.

    Article  Google Scholar 

  6. Zaichenko, N.L., Chervin, I.I., Voznesenskii, V.N., El’natanov, Yu.I., and Kostyanovskii, R.G., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, vol. 37, p. 663.

    Article  Google Scholar 

  7. Kostyanovsky, R.G., El’natanov, Yu.I., Chervin, I.I., Konovalikhin, S.V., Zolotoi, A.B., and Atovmyan, L.O., Mendeleev Commun., 1996, vol. 6, p. 143.

    Article  Google Scholar 

  8. Schwan, A.L. and Warkentin, J., Can. J. Chem., 1988, vol. 66, p. 1686.

    Article  CAS  Google Scholar 

  9. Soldatenkov, A.T., Le Tuan An’, Kolyadina, N.M., Il’in, A.P., and Chyong Khong Khieu, Lekarstva. Prikladnoi Tonkii Organicheskii Sintez (Medicines. Applied Fine Organic Synthesis), Soldatenkov, A.T., Ed., Hanoi: Znaniya, 2014, p. 250.

  10. Reutov, O.A, Kurts, A.L., and Butin, K.P., Organicheskaya khimiya. Chast’ 4 (Organic Chemistry. Part 4), Moscow: BINOM, 2004, p. 299.

    Google Scholar 

  11. Hassner, A., Da’Costa, R., McPhail, A.T., and Butler, W., Tetrahedron Lett., 1981, vol. 22, p. 3691.

    Article  CAS  Google Scholar 

  12. Hayakawa, K., Motohiro, S., Fujii, I., and Kanematsu, K., J. Am. Chem. Soc., 1981, vol. 103, p. 4605.

    Article  CAS  Google Scholar 

  13. Singh, A., Archer, S., Hoogsteen, K., and Hirschfeld, J., J. Org. Chem., 1982, vol. 47, p. 752.

    Article  CAS  Google Scholar 

  14. Hayakawa, K., Fujii, I., and Kanematsu, K., J. Org. Chem., 1983, vol. 48, p. 166.

    Article  CAS  Google Scholar 

  15. Singh, A., Archer, S., Hoogsteen, K., and Hirschfeld, J., J. Org. Chem., 1983, vol. 48, p. 173.

    Article  CAS  Google Scholar 

  16. Chao, S., Kunng, F.-A., Gu, J.-M., Ammon, H.L., and Mariano, P., J. Org. Chem., 1984, vol. 49, p. 2709.

    Article  Google Scholar 

  17. Varlamov, A.V., Borisova, T.N., Voskressensky, L.G., Soklakova, T.A., Kulikova, L.N., Chernyshev, A.I., and Alexandrov, G.G., Tetrahedron Lett., 2002, vol. 43, p. 6767.

    Article  CAS  Google Scholar 

  18. Voskressensky, L.G., Borisova, T.N., Kulikova, L.N., Varlamov, A.V., Catto, M., Altomare, C., and Carotii, A., Eur. J. Org. Chem., 2004, p. 3128.

  19. Voskressensky, L.G., Borisova, T.N., Babakhanova, M.I., Chervyakova, T.M., Titov, A.A., Butin, A.V., Nevolina, T.A., Khrustalev, V.N., and Varlamov, A.V., Chem. Heterocycl. Compd., 2013, vol. 49, p. 1024.

    Article  CAS  Google Scholar 

  20. Soldatenkov, A.T., Volkov, S.V., and Soldatova, S.A., Chem. Heterocycl. Compd., 2007, vol. 43, p. 508.

    Article  CAS  Google Scholar 

  21. Gimranova, G.S., Soldatova, S.A., Prokudina, E.G., Soldatenkov, A.T., and Polyanskii, K.B., Russ. J. Org. Chem., 2008, vol. 44, p. 1399.

    Article  CAS  Google Scholar 

  22. Soldatenkov, A.T., Soldatova, S.A., Suleimanov, R.R., Kolyadina, N.M., and Khrustalev, V.N., Chem. Heterocycl. Compd., 2010, vol. 46, p. 245.

    Article  CAS  Google Scholar 

  23. Soldatenkov, A.T., Soldatova, S.A., Suleimanov, R.R., Polyanskii, K.B., Kotsyuba, V.E., Smolyakov, A.F., Khrustalev, V.N., and Antipin, M.Yu., Russ. J. Org. Chem., 2011, vol. 47, p. 1738.

    Article  CAS  Google Scholar 

  24. Malkova, A.V., Polyanskii, K.B., Soldatenkov, A.T., Soldatova, S.A., and Merkulova, N.L., Russ. J. Org. Chem., 2015, vol. 51, p. 1033.

    Article  CAS  Google Scholar 

  25. http://pharmaexpert.ru/passonline/

  26. Volkov, S.V., Cand. Sci. (Chem.) Dissertation, Moscow, 2007.

  27. Plati, J.T. and Wenner, W., J. Org. Chem., 1949, vol. 14, p. 543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Soldatova.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 4, pp. 573–582.

Deceased.

Funding

This study was performed under financial support by the 5–100 Program of the Peoples’ Friendship University of Russia.

Conflict of Interests

The authors declare the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatova, S.A., Kolyadina, N.M., Soldatenkov, A.T. et al. Cascade Synthesis of 2-Azafluorene, Azocine, and Azabicyclononane Derivatives by Reaction of Activated Acetylenes with Some β-Amino Ketones. Russ J Org Chem 55, 479–486 (2019). https://doi.org/10.1134/S1070428019040109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019040109

Keywords

Navigation