Skip to main content
Log in

Quantum Chemical Study of the Mechanism of Formation of a Fused Heterocyclic System from 4,5-Dihydro-1H-imidazole-2-thiol and 1-Iodopropan-2-one

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Five possible paths of the formation of imidazo[2,1-b][1,3]thiazole fused heterocyclic system in the reaction of 4,5-dihydro-1H-imidazole-2-thiol with 1-iodopropan-2-one have been simulated by DFT B3LYP quantum chemical calculations. Analysis of the thermodynamic and kinetic parameters of the reaction has revealed two most probable paths leading to two isomeric structures. It has been found that the formation of fused heterocyclic system is possible only with participation of triiodide ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, K., Lok, C.-N., Bierlab, K., and Che, C.-M., Chem. Commun., 2010, vol. 46, p. 7691. doi https://doi.org/10.1039/c0cc01058h

    Article  CAS  Google Scholar 

  2. Lin, I.W.-S., Lok, C.-N., Yan, K., and Che, C.-M., Chem. Commun., 2013, vol. 49, p. 3297. doi https://doi.org/10.1039/c3cc00063j3

    Article  CAS  Google Scholar 

  3. Granik, V.G. and Grigor’ev, N.B., Russ. Chem. Bull., Int. Ed., 2002, vol. 51, p. 1973. doi https://doi.org/10.1023/A:1021611422169

    Article  CAS  Google Scholar 

  4. Johnston, G.A.R., Clin. Exp. Pharmacol. Physiol., 1992, vol. 19, p. 73. doi https://doi.org/10.1111/j.1440-1681.1992.tb00401.x

    Article  CAS  PubMed  Google Scholar 

  5. Bogatskii, A.V., Luk’yanenko, N.G., and Kirichenko, T.I., Chem. Heterocycl. Compd., 1983, vol. 19, p. 577. doi https://doi.org/10.1007/BF005230646

    Article  Google Scholar 

  6. Nomoto, Y., Obase, H., Takai, H., Hirata, T., Teranishi, M., Nakamura, J., Ohno, T., and Kubo, K., Chem. Pharm. Bull., 1990, vol. 38, p. 2467.

    Article  CAS  PubMed  Google Scholar 

  7. Li, J.J., Limberakis, C., and Pflum, D.A., Modern Organic Synthesis in the Laboratory, Oxford: Oxford Univ., 2007, p. 9.

    Google Scholar 

  8. Minch, B.A., Hickenboth, C.R., Karabin, R.F., Zawacky, S.R., Hockswender, T.R., and McCollum, J.J., US Patent no. 8492542, 2013.

  9. Shagun, L.G., Dorofeev, I.A., Zhilitskaya, L.V., Yarosh, N.O., and Larina, L.I., Chem. Heterocycl. Compd., 2017, vol. 53, p. 920. https://doi.org/10.1007/s10593-017-2146-1

    Article  CAS  Google Scholar 

  10. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.4649131

    Article  CAS  Google Scholar 

  11. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision A.01, Wallingford CT: Gaussian, 2009.

    Google Scholar 

  12. Peng, C. and Schlegel, H.B., Isr. J. Chem., 1993, vol. 33, p. 449.

    Article  CAS  Google Scholar 

  13. Shagun, V.A., Yarosh, N.O., and Shagun, L.G., Russ. J. Org. Chem., 2015, vol. 51, p. 1464. doi https://doi.org/10.1134/S107042801510019X

    Article  CAS  Google Scholar 

  14. Shagun, V.A., Yarosh, N.O., and Shagun, L.G., Russ. J. Org. Chem., 2015, vol. 51, p. 893. doi https://doi.org/10.1134/S1070428015060135

    Article  CAS  Google Scholar 

  15. Shagun, V.A., Zhilitskaya, L.V., and Shagun, L.G., Russ. J. Org. Chem., 2016, vol. 52, p. 1000. doi https://doi.org/10.1134/S1070428016070137

    Article  CAS  Google Scholar 

  16. Shagun, V.A., Zhilitskaya, L.V., and Shagun, L.G., Russ. J. Org. Chem., 2016, vol. 52, p. 1640. doi https://doi.org/10.1134/S1070428016110154

    Article  CAS  Google Scholar 

  17. Shagun, V.A., Dorofeev, I.A., and Shagun, L.G., Russ. Org. Chem., 2017, vol. 53, p. 423. doi https://doi.org/10.1134/S1070428017030186

    Article  CAS  Google Scholar 

  18. Shagun, V.A., Yarosh, N.O., and Shagun, L.G., Russ. Org. Chem., 2017, vol. 53, p. 777. doi https://doi.org/10.1134/S1070428017050207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The main results were obtained using the facilities of the Baikal Joint Analytical Center (Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Shagun.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 4, pp. 524–530.

Conflict of Interests

The authors declare the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shagun, V.A., Zhilitskaya, L.V. & Shagun, L.G. Quantum Chemical Study of the Mechanism of Formation of a Fused Heterocyclic System from 4,5-Dihydro-1H-imidazole-2-thiol and 1-Iodopropan-2-one. Russ J Org Chem 55, 436–441 (2019). https://doi.org/10.1134/S1070428019040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019040031

Keywords

Navigation