Advertisement

Russian Journal of Organic Chemistry

, Volume 55, Issue 1, pp 11–16 | Cite as

Supramolecular Catalytic Systems Based on a Cationic Amphiphile and Sodium Polystyrene Sulfonate for Decomposition of Organophosphorus Pollutants

  • D. A. KuznetsovaEmail author
  • D. R. Gabdrakhmanov
  • E. A. Vasilieva
  • S. S. Lukashenko
  • L. R. Ahtamyanova
  • I. Sh. Siraev
  • L. Ya. Zakharova
Article
  • 13 Downloads

Abstract

A supramolecular catalytic system for hydrolytic decomposition of toxic phosphorus acid esters has been obtained on the basis of a cationic surfactant with a morpholinium head group and sodium polystyrene sulfonate. Self-organization of the new binary catalytic system has been studied by tensiometry, conductometry, pH-metry, spectrophotometry, and dynamic and electrophoretic light scattering, and its aggregation thresholds have been determined. High solubilizing ability of the system with respect to a hydrophobic guest has been revealed. The morpholinium surfactant has been found to accelerate the hydrolysis of phosphonates up to 50 times in comparison to the reaction in water. The apparent hydrolysis rate constant in the presence of the polyelectrolyte decreases threefold due to reduction of the reactant binding constants.

Keywords

self-organization phosphorus acid esters supramolecular catalysis hydrolysis kinetics sodium polystyrene sulfonate surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taghani, A., Goudarzi, N., Bagherian, G.A., Arab Chamjangali, M., and Amin, A.H., J. Sep. Sci., 2018, vol. 41, no. 10, p. 2245.CrossRefGoogle Scholar
  2. 2.
    Raghapriya, R., Dosi, R.V., and Parmar, A., J. Assoc. Physicians India, 2018, vol. 66, p. 18.Google Scholar
  3. 3.
    Li, H., Yan, X., Lu, G., and Su, X., Sens. Actuators, B, 2018, vol. 260, p. 563.CrossRefGoogle Scholar
  4. 4.
    Allan, I.J., Garmo, A., Rundberget, J.T., Terentjev, P., Christensen, G., and Kashulin, N.A., Environ. Sci. Pollut. Res., 2018, vol. 25, no. 28, p. 28730.CrossRefGoogle Scholar
  5. 5.
    Gorecki, L., Korabecny, J., Musilek, K., Malinak, D., Nepovimova, E., Dolezal, R., and Kuca, K., Arch. Toxicol., 2016, vol. 90, no. 12, p. 2831.CrossRefGoogle Scholar
  6. 6.
    Thadathil, N., Muralidhara, M., and Rajini, P.S., Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2018, vol. 210, p. 15.Google Scholar
  7. 7.
    Ma, X., Zhang, L., Xia, M., Zhang, X., and Zhang, Y., J. Hazard. Mater., 2018, vol. 355, p. 65.CrossRefGoogle Scholar
  8. 8.
    Sjöblom, J., Lindberg, R., and Friberg, S.E., Microemulsions, 1996, vol. 65, p. 125.Google Scholar
  9. 9.
    Pashirova, T.N., Zhil’tsova, E.P., Lukashenko, S.S., Gibadullina, E.M., Burilov, A.R., Zakharova, L.Ya., and Konovalov, A.I., Russ. Chem. Bull., Int. Ed., 2016, vol. 65, no. 5, p. 1272.CrossRefGoogle Scholar
  10. 10.
    Zakharova, L.Ya., Mustafina, A.R., Valeeva, F.G., Ibragimova, A.R., Ablakova, Yu.R., Elistratova, Yu.G., Syakaev, V.V., Kudryavtseva, L.A., and Konovalov, A.I., Kolloid. Zh., 2008, vol. 70, no. 4, p. 485.Google Scholar
  11. 11.
    Kashapov, R.R., Lykova, A.A., and Zakharova, L.Y., Macroheterocycles, 2018, vol. 11, no. 2, p. 210.CrossRefGoogle Scholar
  12. 12.
    Gabdrakhmanov, D.R., Valeeva, F.G., Semenov, V.E., Samarkina, D.A., Mikhailov, A.S., Reznik, V.S., and Zakharova, L.Ya., Macroheterocycles, 2016, vol. 9, no. 1, p. 29.CrossRefGoogle Scholar
  13. 13.
    Samarkina, D.A., Gabdrakhmanov, D.R., Semenov, V.E., Valeeva, F.G., Gubaidullina, L.M., Zakharova, L.Ya., Reznik, V.S., and Konovalov, A.I., Russ. J. Gen. Chem., 2016, vol. 86, no. 3, p. 656.CrossRefGoogle Scholar
  14. 14.
    Gaynanova, G.A., Vagapova, G.I., Valeeva, F.G., Vasilieva, E.A., Galkina, I.V., Zakharova, L.Y., and Sinyashin, O.G., Colloids Surf., A, 2016, vol. 489, p. 95.CrossRefGoogle Scholar
  15. 15.
    Gabdrakhamanov, D.R., Samarkina, D.A., Semenov, V.E., Saifina, L.F., Valeeva, F.G., Reznik, V.S., and Zakharova, L.Y., Phosphorus, Sulfur Silicon Relat. Elem., 2016, vol. 191, nos. 11–12, p. 1673.CrossRefGoogle Scholar
  16. 16.
    Mirgorodskaya, A.B., Lukashenko, S.S., Yatskevich, E.I., Kulik, N.V., Voloshina, A.D., Kudryavtsev, D.B., Panteleeva, A.R., Zobov, V.V., Zakharova, L.Ya., and Konovalov, A.I., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 4, p. 538.CrossRefGoogle Scholar
  17. 17.
    Toy, D.F. and Rattinbury, K.H., US Patent no. 2922810, 1960.Google Scholar
  18. 18.
    Berezin, I.V., Martinek, K., and Yatsimirskii, A.K., Russ. Chem. Rev., 1973, vol. 42, p. 787.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Kuznetsova
    • 1
    Email author
  • D. R. Gabdrakhmanov
    • 1
  • E. A. Vasilieva
    • 1
  • S. S. Lukashenko
    • 1
  • L. R. Ahtamyanova
    • 1
  • I. Sh. Siraev
    • 1
  • L. Ya. Zakharova
    • 1
  1. 1.Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center, Russian Academy of SciencesKazan, TatarstanRussia

Personalised recommendations