Advertisement

Russian Journal of Organic Chemistry

, Volume 54, Issue 1, pp 1–44 | Cite as

Exocyclic Double Bond in Benzo-Fused Nitrogen Heterocycles: Methods of Introduction and Syntheses with Its Participation

  • R. R. Gataullin
Review
  • 69 Downloads

Abstract

The review summarizes methods for the synthesis of benzo-fused heterocyclic compounds containing a fairly stable exocyclic double bond in a saturated hetero- or polyheterocyclic fragment. Examples of using such compounds for the preparation of biologically active substances and heterocycles for other applications are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bharkavi, C., Kumar, S.V., Ali, M.A., Osman, H., Muthusubramanian, S., and Perumal, S., Bioorg. Med. Chem., 2016, vol. 24, p. 5873.CrossRefGoogle Scholar
  2. 2.
    Hu, S., Wang, B., Zhang, Y., Tang, W., Fang, M., Lu, T., and Du, D., Org. Biomol. Chem., 2015, vol. 13, p. 4661.CrossRefGoogle Scholar
  3. 3.
    He, F., Bo, Y., Altom, J.D., and Corey, E.J., J. Am. Chem. Soc., 1999, vol. 121, p. 6771.CrossRefGoogle Scholar
  4. 4.
    Sapeta, K. and Kerr, M.A., Org. Lett., 2009, vol. 11, p. 2081.CrossRefGoogle Scholar
  5. 5.
    Crawley, S.L. and Funk, R.L., Org. Lett., 2006, vol. 8, p. 3995.CrossRefGoogle Scholar
  6. 6.
    Numata, A., Takahashi, C., Ito, Y., Takada, T., Kawai, K., Usami, Y., Matsumura, E., Imachi, M., Ito, T., and Hasegawa, T., Tetrahedron Lett., 1993, vol. 34, p. 2355.CrossRefGoogle Scholar
  7. 7.
    Shinya, K., Furihata, K., Teshima, Y., Hayakawa, Y., and Seto, H., J. Org. Chem., 1993, vol. 58, p. 4170.CrossRefGoogle Scholar
  8. 8.
    Turk, C.F., Krapcho, J., Michel, I.M., and Weinryb, I., J. Med. Chem., 1977, vol. 20, p. 729.CrossRefGoogle Scholar
  9. 9.
    Komagata, D., Sawa, T., Muraoka, Y., Imada, C., Okami, Y., and Takeuchi, T., J. Antibiot., 1992, vol. 45, p. 1117.CrossRefGoogle Scholar
  10. 10.
    Miles, D.H., Petrovna, K.O., Naser, S., Yurjevich, S.S., Goun, E.A., and Michailovich, S.V., US Patent no. 6 649 610, 2003; Chem. Abstr., 2003, vol. 139, no. 381 495 j.Google Scholar
  11. 11.
    Zhou, L., Yang, J.-S., Wu, X., Zou, J.-H., Xu, X.-D., and Tu, G.-Z., Heterocycles, 2005, vol. 65, p. 1409.CrossRefGoogle Scholar
  12. 12.
    Kam, T.-S., Tan, S.-J., Ng, S.-K., and Komiyama, K., Org. Lett., 2008, vol. 10, p. 3749.CrossRefGoogle Scholar
  13. 13.
    Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Eichman, C., Jackson, J.R., Mattern, M., Gerwick, W.H., Jacobs, R.S., and Marshall, L.A., J. Pharmacol. Exp. Ther., 2009, vol. 303, p. 858.CrossRefGoogle Scholar
  14. 14.
    Subramaniam, G., Hiraku, O., Hayashi, M., Koyano, T., Komiyama, K., and Kam, T.-S., J. Nat. Prod., 2007, vol. 70, p. 1783.CrossRefGoogle Scholar
  15. 15.
    Dugan, J.J., Hesse, M., Renner, U., and Schmid, H., Helv. Chim. Acta, 1969, vol. 52, p. 701.CrossRefGoogle Scholar
  16. 16.
    Renner, U., Prins, D.A., Burlingame, A.L., and Biemann, K., Helv. Chim. Acta, 1963, vol. 46, p. 2186.CrossRefGoogle Scholar
  17. 17.
    Jagetia, G., Baliga, M.S., Venkatesh, P., Ulloor, J.N., Mantena, S.K., Genebriera, J., and Mathuram, V., J. Pharm. Pharmacol., 2005, vol. 57, p. 1213.CrossRefGoogle Scholar
  18. 18.
    Goodson, J.A., J. Chem. Soc., 1932, vol. 127, p. 2626.CrossRefGoogle Scholar
  19. 19.
    Girardot, M., Gadea, A., Deregnaucourt, C., Deville, A., Dubost, L., Nay, B., Maciuk, A., Rasoanaivo, P., and Mambu, L., Eur. J. Org. Chem., 2012, p. 2816.Google Scholar
  20. 20.
    Benbow, J.W. and Schulle, G.K., Angew. Chem., Int. Ed. Engl., 1992, vol. 31, p. 915.CrossRefGoogle Scholar
  21. 21.
    Trost, B.M., O’Boyle, B.M., Torres, W., and Ameriks, M.K., Chem. Eur. J., 2011, vol. 17, p. 7890.CrossRefGoogle Scholar
  22. 22.
    Uchida, I., Takase, S., Kayakiri, H., Kiyoto, S., Hashimoto, M., Tada, T., Koda, S., and Morimoto, Y., J. Am. Chem. Soc., 1987, vol. 109, p. 4108.CrossRefGoogle Scholar
  23. 23.
    He, X., Hu, S., Liu, K., Guo, Y., Xu, J., and Shao, S., Org. Lett., 2006, vol. 8, p. 333.CrossRefGoogle Scholar
  24. 24.
    Wang, L., He, X., Guo, Y., Xu, J., and Shao, S., Org. Biomol. Chem., 2011, vol. 9, p. 752.CrossRefGoogle Scholar
  25. 25.
    Krishna, C.T. and Rajagopal, N., Synlett, 2011, p. 2559.Google Scholar
  26. 26.
    Zhu, X.-Q., Wu, J.-S., and Xie, J.-W., Tetrahedron, 2016, vol. 72, p. 8327.CrossRefGoogle Scholar
  27. 27.
    Harrison, C.A., Leineweber, R., Moody, C.J., and Williams, J.M.J., J. Chem. Soc., Perkin Trans. 1, 1995, p. 1127.Google Scholar
  28. 28.
    Barluenga, J., Fañanás, F.J., Sanz, R., and Fernández, Y., Chem. Eur. J., 2002, vol. 8, p. 2034.CrossRefGoogle Scholar
  29. 29.
    Wojciechowski, K., Eur. J. Org. Chem., 2001, p. 3587.Google Scholar
  30. 30.
    Laronze, M. and Sapi, J., Tetrahedron Lett., 2002, vol. 43, p. 7925.CrossRefGoogle Scholar
  31. 31.
    Ko, C.-W. and Chou, T., J. Org. Chem., 1998, vol. 63, p. 4645.CrossRefGoogle Scholar
  32. 32.
    Li, Z., Kumar, A., Sharma, S.K., Parmar, V.S., and Van der Eycken, E.V., Tetrahedron, 2015, vol. 71, p. 3333.CrossRefGoogle Scholar
  33. 33.
    Safrygin, A.V., Irgashev, R.A., Slepukhin, P.A., Roschenthaler, G.-V., and Sosnovskikh, V.Y., Tetrahedron, 2015, vol. 71, p. 8535.CrossRefGoogle Scholar
  34. 34.
    Han, B., Xiao, Y.-C., Yao, Y., and Chen, Y.-C., Angew. Chem., 2010, vol. 122, p. 10.387.Google Scholar
  35. 35.
    Ferrer, C. and Echavarren, A.M., Angew. Chem., Int. Ed., 2006, vol. 45, p. 1105.CrossRefGoogle Scholar
  36. 36.
    Ferrer, C., Amijs, C.H.M., and Echavarren, A.M., Chem. Eur. J., 2007, vol. 13, p. 1358.CrossRefGoogle Scholar
  37. 37.
    Likhacheva, N.A., Gataullin, R.R., Abdrakhmanov, I.B., and Tolstikov, G.A., Azotsoderzhashchie geterotsikly (Nitrogen-Containing Heterocycles), Kartsev, V.G., Ed., Moscow: Iridium, 2006, vol. 1, p. 353.Google Scholar
  38. 38.
    Terada, Y., Arisawa, M., and Nishida, A., J. Org. Chem., 2006, vol. 71, p. 1269.CrossRefGoogle Scholar
  39. 39.
    Arisawa, M., Terada, Y., Takahashi, K., Nakagawa, M., and Nishida, A., J. Org. Chem., 2006, vol. 71, p. 4255.CrossRefGoogle Scholar
  40. 40.
    Matsumoto, S., Samata, D., Akazome, M., and Ogura, K., Tetrahedron Lett., 2009, vol. 50, p. 111.CrossRefGoogle Scholar
  41. 41.
    Terada, Y., Arisawa, M., and Nishida, A., Angew. Chem., 2004, vol. 116, p. 4155.CrossRefGoogle Scholar
  42. 42.
    Ogawa, T., Nakamura, T., Araki, T., Yamamoto, K., Shuto, S., and Arisawa, M., Eur. J. Org. Chem., 2012, p. 3084.Google Scholar
  43. 43.
    Larock, R.C., Hightower, T.R., Hasvold, L.A., and Peterson, K.R., J. Org. Chem., 1996, vol. 61, p. 3584.CrossRefGoogle Scholar
  44. 44.
    Larock, R.C., Pace, P., Yang, H., and Russell, C.E., Tetrahedron, 1998, vol. 54, p. 9961.CrossRefGoogle Scholar
  45. 45.
    Sakamoto, T., Kondo, Y., Uchiyama, M., and Yamanaka, H., J. Chem. Soc., Perkin Trans. 1, 1993, p. 1941.Google Scholar
  46. 46.
    Muzart, J., Tetrahedron, 2009, vol. 65, p. 8313.CrossRefGoogle Scholar
  47. 47.
    Skladchikov, D.A. and Gataullin, R.R., Russ. J. Gen. Chem., 2013, vol. 83, p. 373.CrossRefGoogle Scholar
  48. 48.
    Lhermet, R., Durandetti, M., and Maddaluno, J., Beilstein J. Org. Chem., 2013, vol. 9, p. 710.CrossRefGoogle Scholar
  49. 49.
    Charrier, N., Demont, E., Dunsdon, R., Maile, G., Naylor, A., O’Brien, A., Redshaw, S., Theobald, P., Vesey, D., and Walter, D., Synlett, 2005, p. 3071.Google Scholar
  50. 50.
    Hegedus, L.S., Mulhern, T.A., and Mori, A., J. Org. Chem., 1985, vol. 50, p. 4282.CrossRefGoogle Scholar
  51. 51.
    Lin, H. and Kazmaier, U., Eur. J. Org. Chem., 2009, p. 1221.Google Scholar
  52. 52.
    Murphy, J.A., Scot, K.A., Sinclan, R.S., and Lewis, N., Tetrahedron Lett., 1997, vol. 38, p. 7295.CrossRefGoogle Scholar
  53. 53.
    Strat, F.L. and Maddaluno, J., Org. Lett., 2002, vol. 4, p. 2791.CrossRefGoogle Scholar
  54. 54.
    Kim, H.S., Lee, H.S., Kim, S.H., and Kim, J.N., Tetrahedron Lett., 2009, vol. 50, p. 3154.CrossRefGoogle Scholar
  55. 55.
    Beemelmanns, C. and Reissig, H.-U., Org. Biomol. Chem., 2009, vol. 7, p. 4475.CrossRefGoogle Scholar
  56. 56.
    Petkovic, M., Nasufovic, V., Djukanovic, D., Vujosevic, Z.T., Jadranin, M., Matovic, R., and Savic, V., Eur. J. Org. Chem., 2016, p. 1279.Google Scholar
  57. 57.
    Camp, J.E., Craig, D., Funai, K., and White, A.J.P., Org. Biomol. Chem., 2011, vol. 9, p. 7904.CrossRefGoogle Scholar
  58. 58.
    Junji, I., Takashi, M., and Yu, I., Chem. Lett., 2004, vol. 33, p. 1354.CrossRefGoogle Scholar
  59. 59.
    Baxter, C.A., Cleator, E., Alam, M., Daves, A.J., Goodyear, A., and O’Hagen, M., Org. Lett., 2010, vol. 12, p. 668.CrossRefGoogle Scholar
  60. 60.
    Gataullin, R.R., Afon’kin, I.S., Fatykhov, A.A., Spirikhin, L.V., and Abdrakhmanov, I.B., Mendeleev Commun., 2001, p. 201.Google Scholar
  61. 61.
    Gataullin, R.R., Sotnikov, A.M., Spirikhin, L.V., and Abdrakhmanov, I.B., Russ. J. Org. Chem., 2005, vol. 41, p. 715.CrossRefGoogle Scholar
  62. 62.
    Yao, T. and Larock, R.C., J. Org. Chem., 2005, vol. 70, p. 1432.CrossRefGoogle Scholar
  63. 63.
    Bantreil, X., Bourderioux, A., Mateo, P., Hagerman, C.E., Selkti, M., Brachet, E., and Belmont, P., Org. Lett., 2016, vol. 18, p. 4814.CrossRefGoogle Scholar
  64. 64.
    Vasilevskii, S.F., Mikhailovskaya, T.F., Stepanov, A.A., Mamatyuk, V.I., and Fadeev, D.S., Russ. J. Org. Chem., 2014, vol. 50, p. 506.CrossRefGoogle Scholar
  65. 65.
    Perdigao, G., Deraeve, C., Mori, G., Pasca, M.R., Pratviel, G., and Bernardes-Genisson, V., Tetrahedron, 2015, vol. 71, p. 1555.CrossRefGoogle Scholar
  66. 66.
    Chen, H., Wang, Q., and Huang, Y., Tetrahedron, 2015, vol. 71, p. 3632.CrossRefGoogle Scholar
  67. 67.
    Reddy, V., Jadhav, A.S., and Anand, R.V., Eur. J. Org. Chem., 2016, p. 453.Google Scholar
  68. 68.
    Li, D.Y., Shi, K.J., Mao, X.F., Zhao, Z.L., Wu, X.Y., and Liu, P.N., Tetrahedron, 2014, vol. 70, p. 7022.CrossRefGoogle Scholar
  69. 69.
    Yamskov, A.N., Samet, A.V., and Semenov, V.V., Russ. Chem. Bull., Int. Ed., 2003, vol. 52, p. 759.CrossRefGoogle Scholar
  70. 70.
    Skorcz, J.A. and Suh, J.T., US Patent no. 3 472 843 A. www.google.com/patents/US3472843.Google Scholar
  71. 71.
    Cao, G., Long, F., Zhao, Y., Wang, Y., Huang, L., and Teng, D., Tetrahedron, 2014, vol. 70, p. 9359.CrossRefGoogle Scholar
  72. 72.
    Chen, X., Fan, H., Zhang, S., Yu, C., and Wang, W., Chem. Eur. J., 2016, vol. 22, p. 716.CrossRefGoogle Scholar
  73. 73.
    Larock, R.C., Berrios-Pena, N.G., and Fried, C.A., J. Org. Chem., 1991, vol. 56, p. 2615.CrossRefGoogle Scholar
  74. 74.
    Larock, R.C. and Zenner, J.M., J. Org. Chem., 1995, vol. 60, p. 482.CrossRefGoogle Scholar
  75. 75.
    Zenner, J.M. and Larock, R.C., J. Org. Chem., 1999, vol. 64, p. 7312.CrossRefGoogle Scholar
  76. 76.
    Ma, J., Yin, W., Zhou, H., Liao, X., and Cook, J.M., J. Org. Chem., 2009, vol. 74, p. 264.CrossRefGoogle Scholar
  77. 77.
    Fujita, T., Sugiyama, K., Sanada, S., Ichitsuka, T., and Ichikawa, J., Org. Lett., 2016, vol. 18, p. 248.CrossRefGoogle Scholar
  78. 78.
    Dethe, D.H. and Boda, R., Chem. Eur. J., 2016, vol. 22, p. 106.CrossRefGoogle Scholar
  79. 79.
    Zhou, X., Peng, Z., Zhao, H., Zhang, Z., Lu, P., and Wang, Y., Chem. Commun., 2016, vol. 52, p. 10.676.Google Scholar
  80. 80.
    Kato, Y., Ebiike, H., Achiwa, K., Ashizawa, N., Kurihara, T., and Kobayashi, F., Chem. Pharm. Bull., 1990, vol. 38, p. 2060.CrossRefGoogle Scholar
  81. 81.
    Pathare, R.S., Sharma, S., Elagandhula, S., Saini, V., Sawant, D.M., Yadav, M., Sharon, A., Khan, S., and Pardasani, R.T., Eur. J. Org. Chem., 2016, p. 5579.Google Scholar
  82. 82.
    Kato, Y., Takemoto, M., and Achiwa, K., Chem. Pharm. Bull., 1993, vol. 41, p. 2003.CrossRefGoogle Scholar
  83. 83.
    Munoz, S.B., Aloia, A.N., Moore, A.K., Papp, A., Mathew, T., Fustero, S., Olah, G.A., and Prakash, G.K.S., Org. Biomol. Chem., 2016, vol. 14, p. 85.CrossRefGoogle Scholar
  84. 84.
    Zheng, X.-X., Du, C., Zhao, X.-M., Zhu, X., Suo, J.-F., Hao, X.-Q., Niu, J.-L., and Song, M.-P., J. Org. Chem., 2016, vol. 81, p. 4002.CrossRefGoogle Scholar
  85. 85.
    Reddy, M.C. and Jeganmohan, M., Org. Lett., 2014, vol. 16, p. 4866.CrossRefGoogle Scholar
  86. 86.
    Mazgarova, G.G., Suponitskii, K.Yu., and Gataullin, R.R., Russ. J. Org. Chem., 2013, vol. 49, p. 1322.CrossRefGoogle Scholar
  87. 87.
    Mazgarova, G.G., Absalyamova, A.M., and Gataullin, R.R., Russ. J. Org. Chem., 2012, vol. 48, p. 1200.CrossRefGoogle Scholar
  88. 88.
    Kuroda, N., Takahashi, Y., Yoshinaga, K., and Mukai, C., Org. Lett., 2006, vol. 8, p. 1843.CrossRefGoogle Scholar
  89. 89.
    Inagaki, F., Mizutani, M., Kuroda, N., and Mukai, C., J. Org. Chem., 2009, vol. 74, p. 6402.CrossRefGoogle Scholar
  90. 90.
    Marinelli, E.R., Tetrahedron Lett., 1982, vol. 23, p. 2745.CrossRefGoogle Scholar
  91. 91.
    Susanti, D., Koh, F., Kusuma, J.A., Kothandaraman, P., and Chan, P.W.H., J. Org. Chem., 2012, vol. 77, p. 7166.CrossRefGoogle Scholar
  92. 92.
    Kumar, G.R., Kumar, Y.K., Kant, R., and Reddy, M.S., Org. Biomol. Chem., 2016, vol. 14, p. 4077.CrossRefGoogle Scholar
  93. 93.
    Manisha, M., Dhiman, S., Mathew, I., and Ramasastry, S.S.V., Org. Biomol. Chem., 2016, vol. 14, p. 5563.CrossRefGoogle Scholar
  94. 94.
    Xu, X.-L., Yu, C.-L., Chen, W., Li, Y.-C., Yang, L.-J., Li, Y., Zhang, H.-B., and Yang, X.-D., Org. Biomol. Chem., 2015, vol. 13, p. 1550.CrossRefGoogle Scholar
  95. 95.
    Nani, R.R., Shaum, J.B., Gorkaand, A.P., and Schnermann, M.J., Org. Lett., 2015, vol. 17, p. 302.CrossRefGoogle Scholar
  96. 96.
    Xiao, H., Li, P., Zhang, S., Zhang, W., Zhang, W., and Tang, B., Chem. Commun., 2016, vol. 52, p. 12.741.Google Scholar
  97. 97.
    Chao, S., Krejci, E., Bernard, V., Leroy, J., Jean, L., and Renard, P.-Y., Chem. Commun., 2016, vol. 52, p. 11.599.Google Scholar
  98. 98.
    Gorka, A.P., Nani, R.R., and Schnermann, M.J., Org. Biomol. Chem., 2015, vol. 13, p. 7584.CrossRefGoogle Scholar
  99. 99.
    Tirla, A. and Rivera-Fuentes, P., Angew. Chem., Int. Ed., 2016, vol. 55, p. 14.709.CrossRefGoogle Scholar
  100. 100.
    Matsui, M., Ando, S., Fukushima, M., Shibata, T., Kubota, Y., and Funabiki, K., Tetrahedron, 2015, vol. 71, p. 3528.CrossRefGoogle Scholar
  101. 101.
    Yang, L., Huang, W., He, X.-H., Yang, M.-C., Li, X., He, G., Peng, C., and Han, B., Adv. Synth. Catal., 2016, vol. 358, p. 2970.CrossRefGoogle Scholar
  102. 102.
    Liang, J., Zhang, H.-H., Wang, C.-S., Wu, Q., and Shi, F., Synthesis, 2016, vol. 48, p. 4548.CrossRefGoogle Scholar
  103. 103.
    Lu, B. and Ma, D., Org. Lett., 2006, vol. 8, p. 6115.CrossRefGoogle Scholar
  104. 104.
    Millemaggi, A., Perry, A., Whitwood, A.C., and Taylor, R.J.K., Eur. J. Org. Chem., 2009, p. 2947.Google Scholar
  105. 105.
    Ashimori, A., Bachand, B., Overman, L.E., and Poon, D.J., J. Am. Chem. Soc., 1998, vol. 120, p. 6477.CrossRefGoogle Scholar
  106. 106.
    Ashimori, A., Bachand, B., Galter, M.A., Govek, S.P., Overman, L.E., and Poon, D.J., J. Am. Chem. Soc., 1998, vol. 120, p. 6488.CrossRefGoogle Scholar
  107. 107.
    Terpko, M.O. and Hesk, R.F., J. Am. Chem. Soc., 1979, vol. 101, p. 5281.CrossRefGoogle Scholar
  108. 108.
    Mori, M. and Ban, Y., Tetrahedron Lett., 1979, vol. 13, p. 1133.CrossRefGoogle Scholar
  109. 109.
    Inoue, M., Takahashi, T., Furuyama, H., and Hirama, M., Synlett, 2006, p. 3037.Google Scholar
  110. 110.
    Yamamoto, Y., Chem. Soc. Rev., 2014, vol. 43, p. 1575.CrossRefGoogle Scholar
  111. 111.
    Tang, S., Peng, P., Wang, Z.Q., Tang, B.X., Deng, C.L., Li, J.H., Zhong, P., and Wang, N.X., Org. Lett., 2008, vol. 10, p. 1875.CrossRefGoogle Scholar
  112. 112.
    Jiang, T.-S., Tang, R.-Y., Zhang, X.-G., Li, X.-H., and Li, J.-H., J. Org. Chem., 2009, vol. 74, p. 8834.CrossRefGoogle Scholar
  113. 113.
    Reiko, Y., Shingo, O., Tsubasa, I., Kazuo, Y., Masayuki, Y., Shunsaku, O., and Yoshiji, T., J. Org. Chem., 2005, vol. 70, p. 6972.CrossRefGoogle Scholar
  114. 114.
    D’Souza, D.M., Rominger, F., and Muller, T.J.J., Angew. Chem., Int. Ed., 2005, vol. 44, p. 153.CrossRefGoogle Scholar
  115. 115.
    Reiko, Y., Shingo, O., Munetako, O., and Yoshiji, T., Org. Lett., 2004, vol. 6, p. 2825.CrossRefGoogle Scholar
  116. 116.
    Pinto, A., Neuville, L., Retailleu, P., and Zhu, J., Org. Lett., 2006, vol. 8, p. 4927.CrossRefGoogle Scholar
  117. 117.
    Shintani, R., Yamagami, T., and Hayashi, T., Org. Lett., 2006, vol. 8, p. 4799.CrossRefGoogle Scholar
  118. 118.
    Miura, T., Takahashi, Y., and Murakami, M., Org. Lett., 2008, vol. 10, p. 1743.CrossRefGoogle Scholar
  119. 119.
    Kobayashi, Y., Kamisari, H., Yanada, R., and Takemoto, Y., Org. Lett., 2006, vol. 8, p. 2711.CrossRefGoogle Scholar
  120. 120.
    Xie, J., Xing, X.-Y., Sha, F., Wu, Z.-Y., and Wu, X.-Y., Org. Biomol. Chem., 2016, vol. 14, p. 8346.CrossRefGoogle Scholar
  121. 121.
    Ölgena, S. and Özkan, S., Z. Naturforsch., Teil C, 2009, vol. 64, p. 155.Google Scholar
  122. 122.
    Robinson, R.P., Reiter, L.A., Barth, W.E., Campeta, A.M., Cooper, K., Cronin, B.J., Destito, R., Donahue, K.M., Falkner, F.C., Fiese, E.F., Johnson, D.L., Kuperman, A.V., Liston, T.E., Malloy, D., Martin, J.J., Mitchell, D.Y., Rusek, F.W., Shamblin, S.L., and Wright, C.F., J. Med. Chem., 1996, vol. 39, p. 10.CrossRefGoogle Scholar
  123. 123.
    Mendel, D.B., Laird, A.D., Smolich, B.D., Blake, R.A., Liang, C., Hannah, A.L., Shaheen, R.M., Ellis, L.M., Weitman, S., Shawver, L.K., and Cherrington, J.M., Anticancer Drug Des., 2000, vol. 15, p. 29.Google Scholar
  124. 124.
    Le Tourneau, C., Raymond, E., and Faivre, S., Ther. Clin. Risk Manage., 2007, vol. 3, p. 341.CrossRefGoogle Scholar
  125. 125.
    Chen, Z., Merta, P.J., Lin, N.-H., Tahir, S.K., Kovar, P., Sham, H.L., and Zhang, H., Mol. Cancer Ther., 2005, vol. 4, p. 562.CrossRefGoogle Scholar
  126. 126.
    Kumar, G.B., Nayak, V.L., Bin Sayeed, I., Reddy, V.S., Shaik, A.B., Mahesh, R., Baig, M.F., Shareef, M.A., Ravikumar, A., and Kamal, A., Bioorg. Med. Chem., 2016, vol. 24, p. 1729.CrossRefGoogle Scholar
  127. 127.
    Liang, Y.-R., Chen, X.-Y., Wu, Q., and Lin, X.-F., Tetrahedron, 2015, vol. 71, p. 616.CrossRefGoogle Scholar
  128. 128.
    Muthusamy, S. and Kumar, S.G., Tetrahedron, 2016, vol. 72, p. 2392.CrossRefGoogle Scholar
  129. 129.
    Jiang, Y.-H. and Yan, C.-G., Synthesis, 2016, vol. 48, p. 3057.CrossRefGoogle Scholar
  130. 130.
    Zhao, H., Wang, X., Wang, L., and Xiao, J., Synthesis, 2016, vol. 48, p. 2112.CrossRefGoogle Scholar
  131. 131.
    Zheng, C., Chen, W.-X., and Chen, F.-E., Asian J. Org. Chem., 2015, vol. 4, p. 1044.CrossRefGoogle Scholar
  132. 132.
    Zheng, C., Wang, H.-F., Chen, W.-Q., Chen, W.-X., and Chen, F.-E., Asian J. Org. Chem., 2015, vol. 4, p. 619.CrossRefGoogle Scholar
  133. 133.
    Li, S.-W., Liu, Y., Sampson, P.B., Patel, N.K., Forrest, B.T., Edwards, L., Laufer, R., Feher, M., Ban, F., Awrey, D.E., Hodgson, R., Beletskaya, I., Mao, G., Mason, J.M., Wei, X., Luo, X., Kiarash, R., Green, E., Mak, T.W., Pan, G., and Pauls, H.W., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 4625.CrossRefGoogle Scholar
  134. 134.
    Sampson, P.B., Liu, Y., Patel, N.K., Feher, M., Forrest, B., Li, S.-W., Edwards, L., Laufer, R., Lang, Y., Ban, F., Awrey, D.E., Mao, G., Plotnikova, O., Leung, G., Hodgson, R., Mason, J., Wei, X., Kiarash, R., Green, E., Qiu, W., Chirgadze, N.Y., Mak, T.W., Pan, G., and Pauls, H.W., J. Med. Chem., 2015, vol. 58, p. 130.CrossRefGoogle Scholar
  135. 135.
    Barkov, A.Yu., Zimnitskiy, N.S., Korotaev, V.Yu., Kutyashev, I.V., Moshkin, V.S., and Sosnovskikh, V.Ya., Tetrahedron, 2016, vol. 72, p. 6825.CrossRefGoogle Scholar
  136. 136.
    Rajasekaran, T., Sridhar, B., and Reddy, B.V.S., Tetrahedron, 2016, vol. 72, p. 2102.CrossRefGoogle Scholar
  137. 137.
    Vetica, F., de Figueiredo, R.M., Orsini, M., Tofani, D., and Gasperi, T., Synthesis, 2015, vol. 47, p. 2139.CrossRefGoogle Scholar
  138. 138.
    Grigg, R., Millington, E.L., and Thornton-Pett, M., Tetrahedron Lett., 2002, vol. 43, p. 2605.CrossRefGoogle Scholar
  139. 139.
    Velikorodov, A.V., Poddubnyi, O.Yu., Ionova, V.A., and Titova, O.L., Russ. J. Org. Chem., 2011, vol. 47, p. 1596.CrossRefGoogle Scholar
  140. 140.
    Sun, J., Chen, L., Gong, H., and Yan, C.-G., Org. Biomol. Chem., 2015, vol. 13, p. 5905.CrossRefGoogle Scholar
  141. 141.
    Velikorodov, A.V., Poddubnyi, O.Yu., Krivosheev, O.O., and Titova, O.L., Russ. J. Org. Chem., 2011, vol. 47, p. 402.CrossRefGoogle Scholar
  142. 142.
    Velikorodov, A.V., Poddubnyi, O.Yu., Kuanchalieva, A.K., and Krivosheev, O.O., Russ. J. Org. Chem., 2010, vol. 46, p. 1826.CrossRefGoogle Scholar
  143. 143.
    Velikorodov, A.V., Imasheva, A.K., Kuanchalieva, A.K., and Poddubnyi, O.Yu., Russ. J. Org. Chem., 2010, vol. 46, p. 971.CrossRefGoogle Scholar
  144. 144.
    Velikorodov, A.V., Kuanchalieva, A.K., and Ionova, V.A., Russ. J. Org. Chem., 2011, vol. 47, p. 1715.CrossRefGoogle Scholar
  145. 145.
    Yang, C., Li, J., Zhou, R., Chen, X., Gao, Y., and He, Z., Org. Biomol. Chem., 2015, vol. 13, p. 4869.CrossRefGoogle Scholar
  146. 146.
    Wang, L., Li, S., Blümel, M., Philipps, A.R., Wang, A., Puttreddy, R., Rissanen, K., and Enders, D., Angew. Chem., Int. Ed., 2016, vol. 55, p. 11.110.Google Scholar
  147. 147.
    Chen, R., Xu, S., Fan, X., Li, H., Tang, Y., and He, Z., Org. Biomol. Chem., 2015, vol. 13, p. 398.CrossRefGoogle Scholar
  148. 148.
    Sun, Q.-S., Lin, H., Sun, X., and Sun, X.-W., Tetrahedron Lett., 2016, vol. 57, p. 5673.CrossRefGoogle Scholar
  149. 149.
    Vishwanath, M., Vinayagam, P., Gajulapalli, V.P.R., and Kesavan, V., Asian J. Org. Chem., 2016, vol. 5, p. 613.CrossRefGoogle Scholar
  150. 150.
    Lv, H., Chen, X.-Y., Sun, L.-H., and Ye, S., J. Org. Chem., 2010, vol. 75, p. 6973.CrossRefGoogle Scholar
  151. 151.
    Xie, Y., Que, Y., Li, T., Zhu, L., Yu, C., and Yao, C., Org. Biomol. Chem., 2015, vol. 13, p. 1829.CrossRefGoogle Scholar
  152. 152.
    Yang, L., Wang, F., Chua, P.J., Lv, Y., Zhong, L.-J., and Zhong, G., Org. Lett., 2012, vol. 14, p. 2894.CrossRefGoogle Scholar
  153. 153.
    Manoni, E. and Bandini, M., Eur. J. Org. Chem., 2016, p. 3135.Google Scholar
  154. 154.
    Wang, F., Li, Z., Wang, J., Li, X., and Cheng, J.-P., J. Org. Chem., 2015, vol. 80, p. 5279.CrossRefGoogle Scholar
  155. 155.
    Liu, Y., Du, Y., Yu, A., Qin, D., and Meng, X., Tetrahedron, 2015, vol. 71, p. 7706.CrossRefGoogle Scholar
  156. 156.
    Liu, Y., Du, Y., Yu, A., Mu, H., and Meng, X., Org. Biomol. Chem., 2016, vol. 14, p. 1226.CrossRefGoogle Scholar
  157. 157.
    Rainoldi, G., Faltracco, M., Presti, L.L., Silvani, A., and Lesma, G., Chem. Commun., 2016, vol. 52, p. 11.575.CrossRefGoogle Scholar
  158. 158.
    Xie, H., Yang, J.-X., Bora, P.P., and Kang, Q., Tetrahedron, 2016, vol. 72, p. 3014.CrossRefGoogle Scholar
  159. 159.
    Reddy, R.S., Lagishetti, C., Kiran, I.N.C., You, H., and He, Y., Org. Lett., 2016, vol. 18, p. 3818.CrossRefGoogle Scholar
  160. 160.
    Soderberg, B.C., Rector, S.R., and O’Neil, S.N., Tetrahedron Lett., 1999, vol. 40, p. 3657.CrossRefGoogle Scholar
  161. 161.
    Ye, F. and Alper, H., J. Org. Chem., 2007, vol. 72, p. 3218.CrossRefGoogle Scholar
  162. 162.
    Burns, B., Grigg, R., Sridharan, V., and Worakun, T., Tetrahedron Lett., 1988, vol. 29, p. 4325.CrossRefGoogle Scholar
  163. 163.
    Zeng, R., Fu, C., and Ma, S., J. Am. Chem. Soc., 2012, vol. 134, p. 9597.CrossRefGoogle Scholar
  164. 164.
    Zeng, R., Wu, S., Fu, C., and Ma, S., J. Am. Chem. Soc., 2013, vol. 135, p. 18.284.CrossRefGoogle Scholar
  165. 165.
    Wang, H. and Glorius, F., Angew. Chem., Int. Ed., 2012, vol. 51, p. 7318.CrossRefGoogle Scholar
  166. 166.
    Wang, H., Beiring, B., Yu, D.-G., Collins, K.D., and Glorius, F., Angew. Chem., Int. Ed., 2013, vol. 52, p. 12.430.CrossRefGoogle Scholar
  167. 167.
    Thrimurtulu, N., Dey, A., Maiti, D., and Volla, C.M.R., Angew. Chem., Int. Ed., 2016, vol. 55, p. 12.361.CrossRefGoogle Scholar
  168. 168.
    Harisha, A.S., Nayak, S.P., Nagarajan, K., Row, T.N.G., and Hosamani, A.A., Tetrahedron, 2016, vol. 72, p. 2880.CrossRefGoogle Scholar
  169. 169.
    Elliott, I.W. and Takekoshi, Y., J. Heterocycl. Chem., 1976, vol. 13, p. 597.CrossRefGoogle Scholar
  170. 170.
    Surikova, O.V. and Mikhailovskii, A.G., Russ. J. Org. Chem., 2015, vol. 51, p. 128.CrossRefGoogle Scholar
  171. 171.
    Perevoshchikova, A.N., Gorbunov, A.A., Rozhkova, Yu.S., Slepukhin, P.A., and Shklyaev, Yu.V., Russ. J. Org. Chem., 2014, vol. 50, p. 513.CrossRefGoogle Scholar
  172. 172.
    Chowdhury, C., Das, B., Mukherjee, S., and Achari, B., J. Org. Chem., 2012, vol. 77, p. 5108.CrossRefGoogle Scholar
  173. 173.
    Wang, A.-F., Zhu, Y.-L., Wang, S.-L., Hao, W.-J., Li, G., Tu, S.-J., and Jiang, B., J. Org. Chem., 2016, vol. 81, p. 1099.CrossRefGoogle Scholar
  174. 174.
    Xiao, Y.-C. and Moberg, C., Org. Lett., 2016, vol. 18, p. 308.CrossRefGoogle Scholar
  175. 175.
    Ishikawa, T., Manabe, S., Aikawa, T., Kudo, T., and Saito, S., Org. Lett., 2004, vol. 6, p. 2361.CrossRefGoogle Scholar
  176. 176.
    Qadir, M., Cobb, J., Sheldrake, P.W., Whittall, N., White, A.J.P., Hii, K.K., Horton, P.N., and Hursthouse, M.B., J. Org. Chem., 2005, vol. 70, p. 1545.CrossRefGoogle Scholar
  177. 177.
    Tabata, H., Yoneda, T., Tasaka, T., Ito, S., Oshitari, T., Takahashi, H., and Natsugari, H., J. Org. Chem., 2016, vol. 81, p. 3136.CrossRefGoogle Scholar
  178. 178.
    Cropper, E.L., White, A.J.P., Ford, A., and Hii, K.K., J. Org. Chem., 2006, vol. 71, p. 1732.CrossRefGoogle Scholar
  179. 179.
    Peshkov, A.A., Peshkov, V.A., Pereshivko, O.P., and Van der Eycken, E.V., Tetrahedron, 2015, vol. 71, p. 3863.CrossRefGoogle Scholar
  180. 180.
    Tietze, L.F. and Schimpf, R., Chem. Ber., 1994, vol. 127, p. 2235.CrossRefGoogle Scholar
  181. 181.
    Kling, A., Backfisch, G., Delzer, J., Geneste, H., Graef, C., Holzenkamp, U., Hornberger, W., Lange, U.E.W., Lauterbach, A., Mack, H., Seitz, W., and Subkowski, T., Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 441.CrossRefGoogle Scholar
  182. 182.
    Viti, G., Giannotti, D., Altamura, M., Ricci, R., Volterra, G., Lecci, A., Borsini, F., and Pestellini, V., Eur J. Med. Chem., 1993, vol. 28, p. 439.CrossRefGoogle Scholar
  183. 183.
    Majumbar, K.C., Chattopadyay, B., and Samanta, S., Tetrahedron Lett., 2009, vol. 50, p. 3178.CrossRefGoogle Scholar
  184. 184.
    Gabriele, B., Salerno, G., Veltri, L., Costa, M., and Massera, C., Eur. J. Org. Chem., 2001, p. 4607.Google Scholar
  185. 185.
    Costa, M., Della Ca, N., Gabriele, B., Massera, C., Salerno, G., and Soliani, M., J. Org. Chem., 2004, vol. 69, p. 2469.CrossRefGoogle Scholar
  186. 186.
    Bacchi, A., Glusoli, G.P., Costa, M., Sani, C., Gabriele, B., and Salerno, G., J. Organomet. Chem., 1998, vol. 562, p. 35.CrossRefGoogle Scholar
  187. 187.
    Gabriele, B., Salerno, G., and Costa, M., Synlett, 2004, p. 2468.Google Scholar
  188. 188.
    Yoshida, M., Mizuguchi, T., and Shishido, K., Chem. Eur. J., 2012, vol. 18, p. 15.578.Google Scholar
  189. 189.
    Ishida, T., Kikuchi, S., Tsubo, T., and Yamada, T., Org. Lett., 2013, vol. 15, p. 848.CrossRefGoogle Scholar
  190. 190.
    Saito, T., Ogawa, S., Takei, N., Kutsumura, N., and Otani, T., Org. Lett., 2011, vol. 13, p. 1098.CrossRefGoogle Scholar
  191. 191.
    Vandavasi, J.K., Kuo, K.-K., Hu, W.-P., Shen, H.-C., Lo, W.-S., and Wang, J.-J., Org. Biomol. Chem., 2013, vol. 11, p. 6520.CrossRefGoogle Scholar
  192. 192.
    Weyrauch, J.P., Hashmi, A.S.K., Schuster, A., Hengst, T., Schetter, S., Littmann, A., Rudolph, M., Hamzic, M., Visus, J., Rominger, F., Frey, W., and Bats, J.W., Chem. Eur. J., 2010, vol. 16, p. 956.CrossRefGoogle Scholar
  193. 193.
    Brahma, K., Das, V., and Chowdhury, S., Tetrahedron, 2014, vol. 70, p. 5863.CrossRefGoogle Scholar
  194. 194.
    Zhou, Y.-G., Yang, P.-Y., and Han, X.-W., J. Org. Chem., 2005, vol. 70, p. 1679.CrossRefGoogle Scholar
  195. 195.
    Gazzola, S., Beccalli, E.M., Bernasconi, A., Borelli, T., Broggini, G., and Mazza, A., Eur. J. Org. Chem., 2016, p. 4534.Google Scholar
  196. 196.
    Liu, Z.-T., Wang, Y.-H., Zhu, F.-L., and Hu, X.-P., Org. Lett., 2016, vol. 18, p. 1190.CrossRefGoogle Scholar
  197. 197.
    Mukovoz, P.P., Koz’minykh, V.O., Andreeva, V.A., Koz’minykh, E.N., and El’tsov, O.S., Russ. J. Org. Chem., 2015, vol. 51, p. 1453.CrossRefGoogle Scholar
  198. 198.
    Zhang, D., Yang, Y., Gao, M., Shu, W., Wu, L., Zhu, Y., and Wu, A., Tetrahedron, 2013, vol. 69, p. 1849.CrossRefGoogle Scholar
  199. 199.
    Makarenko, S.V., Kovalenko, K.S., Vershinina, Ya.S., and Berestovitskaya, V.M., Russ. J. Org. Chem., 2014, vol. 50, p. 83.CrossRefGoogle Scholar
  200. 200.
    Chegaev, K., Federico, A., Marini, E., Rolando, B., Fruttero, R., Morbin, M., Rossi, G., Fugnanesi, V., Bastone, A., Salmona, M., Badiola, N.B., Gasparini, L., Cocco, S., Ripoli, C., Grassi, C., and Gasco, A., Bioorg. Med. Chem., 2015, vol. 23, p. 4688.CrossRefGoogle Scholar
  201. 201.
    Masaki, S., Kii, I., Sumida, Y., Kato-Sumida, T., Ogawa, Y., Ito, N., Nakamura, M., Sonamoto, R., Kataoka, N., Hosoya, T., and Hagiwara, M., Bioorg. Med. Chem., 2015, vol. 23, p. 4434.CrossRefGoogle Scholar
  202. 202.
    Henry, C.E., Xu, Q., Fan, Y.C., Martin, T.J., Belding, L., Dudding, T., and Kwon, O., J. Am. Chem. Soc., 2014, vol. 136, p. 11.890.CrossRefGoogle Scholar
  203. 203.
    Wang, C., Gao, Z., Zhou, L., Yuan, C., Sun, Z., Xiao, Y., and Guo, H., Org. Lett., 2016, vol. 18, p. 3418.CrossRefGoogle Scholar
  204. 204.
    Conceição, D.S., Ferreira, D.P., Graça, V.C., Silva, C.R., Santos, P.F., and Vieira Ferreira, L.F., Tetrahedron, 2015, vol. 71, p. 967.CrossRefGoogle Scholar
  205. 205.
    Xie, H., Liu, J.-C., and Ding, M.-W., Synthesis, 2016, vol. 48, p. 4541.CrossRefGoogle Scholar
  206. 206.
    Buffat, M.G.P. and Thomas, E.J., Tetrahedron, 2016, vol. 72, p. 451.CrossRefGoogle Scholar
  207. 207.
    Mancuso, R., Raut, D.S., Marino, N., De Luca, G., Giordano, C., Catalano, S., Barone, I., Andý, S., and Gabriele, B., Chem. Eur. J., 2016, vol. 22, p. 3053.CrossRefGoogle Scholar
  208. 208.
    Reddy, A.S. and Swamy, K.C.K., Org. Lett., 2015, vol. 17, p. 2996.CrossRefGoogle Scholar
  209. 209.
    Lee, S.-Y., Perotti, A., De Jonghe, S., Herdewijn, P., Hanck, T., and Müller, C.E., Bioorg. Med. Chem., 2016, vol. 24, p. 3157.CrossRefGoogle Scholar
  210. 210.
    Mavrova, A.Ts., Yancheva, D., Anastassova, N., Anichina, K., Zvezdanovic, J., Djordjevic, A., Markovic, D., and Smelcerovic, A., Bioorg. Med. Chem., 2015, vol. 23, p. 6317.CrossRefGoogle Scholar
  211. 211.
    Ramachary, D.B., Krishna, P.M., and Reddy, T.P., Org. Biomol. Chem., 2016, vol. 14, p. 6413.CrossRefGoogle Scholar
  212. 212.
    Gvozdev, V.D., Shavrin, K.N., Egorov, M.P., and Nefedov, O.M., Mendeleev Commun., 2016, vol, 26, p. 3.CrossRefGoogle Scholar
  213. 213.
    Pérez-Galán, P., Waldmann, H., and Kumar, K., Tetrahedron, 2016, vol. 72, p. 3647.CrossRefGoogle Scholar
  214. 214.
    Ekebergh, A., Lingblom, C., Sandin, P., Wennerås, C., and Mårtensson, J., Org. Biomol. Chem., 2015, vol. 13, p. 3382.CrossRefGoogle Scholar
  215. 215.
    McNulty, J., Keskar, K., Jenkins, H.A., Werstiuk, N.H., Bordón, C., Yolken, R., and Jones-Brando, L., Org. Biomol. Chem., 2015, vol. 13, p. 10.015.CrossRefGoogle Scholar
  216. 216.
    Zhou, T., Wang, Y., Li, B., and Wang, B., Org. Lett., 2016, vol. 18, p. 5066.CrossRefGoogle Scholar
  217. 217.
    Vachhani, D.D., Modha, S.G., Sharma, A., and Van der Eycken, E.V., Tetrahedron, 2013, vol. 69, p. 359.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ufa Institute of ChemistryRussian Academy of SciencesUfaRussia

Personalised recommendations