Russian Journal of Organic Chemistry

, Volume 53, Issue 11, pp 1726–1737 | Cite as

Synthesis, structure, spectral properties, and electrochemistry of bis(crown ether) containing 1,3-distyrylbenzenes

  • V. N. Nuriev
  • O. V. Fedorov
  • A. A. Moiseeva
  • A. Ya. Freidzon
  • N. A. Kurchavov
  • A. I. Vedernikov
  • A. V. Medved’ko
  • E. S. Pod’yacheva
  • S. Z. Vatsadze
  • S. P. GromovEmail author


The reaction of tetraethyl [1,3-phenylenedi(methylene)]bis(phosphonate) with formyl derivatives of benzocrown-ethers or formyl derivatives of o-dimethoxybenzene lead to high yield formation of the respectful bis(crown ether) containing 1,3-distyrylbenzenes or tetramethoxy-substituted 1,3-distyrenebenzenes. NMR spectra and quantum-chemical calculations showed the prevalence of unsymmetrical syn/anti,(syn,anti),syn/anti-conformations in 1,3-distyrylbenzenes. 1,3-Distyrylbenzenes absorb in shorter wavelength spectral region and have a weaker fluorescence than 1,4-distyrylbenzenes. The difficulty in the electrochemical reduction of 1,3-distyrylbenzenes comparing with 1,4-distyrylbenzenes is due to a less effective conjugation system in the metaderivatives.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steed, J.W. and Atwood, J.L., Supramolecular Chemistry, Chichester: Wiley, 2000, vols. 1, 2.Google Scholar
  2. 2.
    Löhr, H.-G. and Vögtle, F., Acc. Chem. Res., 1985, vol. 18, p. 65.CrossRefGoogle Scholar
  3. 3.
    Shinkai, S., Comprehensive Supramolecular Chemistry, Lehn, J.-M., Ed., New York: Pergamon, 1996, vol. 1, p. 671.Google Scholar
  4. 4.
    Ushakov, E.N., Alfimov, M.V., and Gromov, S.P., Russ. Chem. Rev., 2008, vol. 77, p. 39. doi 10.1070/RC2008v077n01ABEH003757CrossRefGoogle Scholar
  5. 5.
    Gromov, S.P., Russ. Chem. Bull., 2008, vol. 57, p. 1325. doi 10.1007/s11172-008-0174-9CrossRefGoogle Scholar
  6. 6.
    Fedorova, O.A., Fedorov, Yu.V., Vedernikov, A.I., Yescheulova, O.V., Gromov, S.P., Alfimov, M.V., Kuz’mina, L.G., Churakov, A.V., Howard, J.A.K., Zaitsev, S.Yu., Sergeeva, T.I., and Möbius, D., New J. Chem., 2002, vol. 26, p. 543.CrossRefGoogle Scholar
  7. 7.
    Ushakov, E.N. and Gromov, S.P., Russ. Chem. Rev., 2015, vol. 84, p. 787. doi 10.1070/RCR4514CrossRefGoogle Scholar
  8. 8.
    Gromov, S.P., Fedorova, O.A., Ushakov, E.N., Stanislavskii, O.B., and Alfimov, M.V., Dokl. Akad. Nauk USSR, 1991, vol. 321, p. 104.Google Scholar
  9. 9.
    Baskin, I.I., Burstein, K.Ya., Bagatur’yants, A.A., Gromov, S.P., and Alfimov, M.V., J. Mol. Struct., 1992, vol. 274, p. 93.CrossRefGoogle Scholar
  10. 10.
    Gromov, S.P., Ushakov, E.N., Fedorova, O.A., Soldatenkova, V.A., and Alfimov, M.V., Russ. Chem. Bull., 1997, vol. 46, p. 1143. doi 10.1007/BF02496216CrossRefGoogle Scholar
  11. 11.
    Alfimov, M.V., Gromov, S.P., Stanislavskii, O.B., Ushakov, E.N., and Fedorova, O.A., Russ. Chem. Bull., 1993, vol. 42, p. 1385. doi 10.1007/BF00699938CrossRefGoogle Scholar
  12. 12.
    Ushakov, E.N., Gromov, S.P., Buevich, A.V., Baskin, I.I., Fedorova, O.A., Vedernikov, A.I., Alfimov, M.V., Eliasson, B., and Edlund, U., J. Chem. Soc., Perkin Trans. 2, 1999, p. 601.Google Scholar
  13. 13.
    Gromov, S.P., Vedernikov, A.I., Lobova, N.A., Kuz’mina, L.G., Dmitrieva, S.N., Strelenko, Yu.A., and Howard, J.A.K., J. Org. Chem., 2014, vol. 79, p. 11416.CrossRefGoogle Scholar
  14. 14.
    Ushakov, E.N., Vedernikov, A.I., Lobova, N.A., Dmitrieva, S.N., Kuz’mina, L.G., Moiseeva, A.A., Howard, J.A.K., Alfimov, M.V., and Gromov, S.P., J. Phys. Chem. A, 2015, vol. 119, p. 13025.CrossRefGoogle Scholar
  15. 15.
    Vedernikov, A.I., Ushakov, E.N., Efremova, A.A., Kuz’mina, L.G., Moiseeva, A.A., Lobova, N.A., Churakov, A.V., Strelenko, Yu.A., Alfimov, M.V., Howard, J.A.K., and Gromov, S.P., J. Org. Chem., 2011, vol. 76, p. 6768.CrossRefGoogle Scholar
  16. 16.
    Fomina, M.V., Nikiforov, A.S., Vedernikov, A.I., Kurchavov, N.A., and Gromov, S.P., Mendeleev Commun., 2014, vol. 24, p. 295.CrossRefGoogle Scholar
  17. 17.
    Gromov, S.P., Vedernikov, A.I., Ushakov, E.N., Lobova, N.A., Botsmanova, A.A., Kuz’mina, L.G., Churakov, A.V., Strelenko, Yu.A., Alfimov, M.V., Ivanov, E.I., Howard, J.A.K., Johnels, D., and Edlund, U.G., New J. Chem., 2005, vol. 29, p. 881.CrossRefGoogle Scholar
  18. 18.
    Ushakov, E.N., Gromov, S.P., Vedernikov, A.I., Malysheva, E.V., Botsmanova, A.A., Alfimov, M.V., Eliasson, B., Edlund, U.G., Whitesell, J.K., and Fox, M.A., J. Phys. Chem. A, 2002, vol. 106, p. 2020.CrossRefGoogle Scholar
  19. 19.
    Ushakov, E.N., Nadtochenko, V.A., Gromov, S.P., Vedernikov, A.I., Lobova, N.A., Alfimov, M.V., Gostev, F.E., Petrukhin, A.N., and Sarkisov, O.M., Chem. Phys., 2004, vol. 298, p. 251.CrossRefGoogle Scholar
  20. 20.
    Gromov, S.P., Vedernikov, A.I., Lobova, N.A., Kuz’mina, L.G., Basok, S.S., Strelenko, Yu.A., Alfimov, M.V., and Howard, J.A.K., New J. Chem., 2011, vol. 35, p. 724.CrossRefGoogle Scholar
  21. 21.
    Ushakov, E.N., Martyanov, T.P., Vedernikov, A.I., Pikalov, O.V., Efremova, A.A., Kuz’mina, L.G., Howard, J.A.K., Alfimov, M.V., and Gromov, S.P., J. Photochem. Photobiol. A, 2017, vol. 340, p. 80.CrossRefGoogle Scholar
  22. 22.
    Butin, K.P., Moiseeva, A.A., Gromov, S.P., Vedernikov, A.I., Botsmanova, A.A., Ushakov, E.N., and Alfimov, M.V., J. Electroanal. Chem., 2003, vol. 547, p. 93.CrossRefGoogle Scholar
  23. 23.
    Oelkrug, D., Tompert, A., Egelhaaf, H.J., Hanack, M., Steinhuber, E., Hohloch, M., Meier, H., and Stalmach, U., Synth. Met., 1996, vol. 83, p. 231.CrossRefGoogle Scholar
  24. 24.
    Laughlin, B.J., Duniho, T.L., El Homsi, S.J., Levy, B.E., Deligonul, N., Gaffen, J.R., Protasiewicz, J.D., Tennyson, A.G., and Smith, R.C., Org. Biomol. Chem., 2013, vol. 11, p. 5425.CrossRefGoogle Scholar
  25. 25.
    Sandros, K., Sundahl, M., Wennerström, O., and Norinder, U., J. Am. Chem. Soc., 1990, vol. 112, p. 3082.CrossRefGoogle Scholar
  26. 26.
    Marri, E., Elisei, F., Mazzucato, U., Pannacci, D., and Spalletti, A., J. Photochem. Photobiol. A, 2006, vol. 177, p. 307.CrossRefGoogle Scholar
  27. 27.
    Coates, G.W., Dunn, A.R., Henling, L.M., Ziller, J.W., Lobkovsky, E.B., and Grubbs, R.H., J. Am. Chem. Soc., 1998, vol. 120, p. 3641.CrossRefGoogle Scholar
  28. 28.
    Kim, M., Whang, D.R., Gierschnerb, J., and Park, S.Y., J. Mater. Chem. C, 2015, vol. 3, p. 231.CrossRefGoogle Scholar
  29. 29.
    Cavazzini, M., Quici, S., Orlandi, S., Sissa, C., Terenziani, F., and Painelli, A., Tetrahedron, 2013, vol. 69, p. 2827.CrossRefGoogle Scholar
  30. 30.
    Chaieb, A., Khoukh, A., Brown, R., Francois, J., and Dagron-Lartigau, C., Optical Mater., 2007, vol. 30, p. 318.CrossRefGoogle Scholar
  31. 31.
    Kalanoor, A.S., Bisht, P.B., Annamalai, S., and Aidhen, I.S., J. Luminescence, 2009, vol. 129, p. 1094.CrossRefGoogle Scholar
  32. 32.
    Motoyoshiya, J., Fengqiang, Z., Nishii, Y., and Aoyama, H., Spectrochim. Acta. A, 2008, vol. 69, p. 167.CrossRefGoogle Scholar
  33. 33.
    Pond, S.J.K., Tsutsumi, O., Rumi, M., Kwon, O., Zojer, E., Bredas, J.L., Marder, S.R., and Perry, J.W., J. Am. Chem. Soc., 2004, vol. 126, p. 9291.CrossRefGoogle Scholar
  34. 34.
    Nuriev, V.N., Federov, O.V., Pod’yacheva, E.S., Vedernikov, A.I., Kurchavov, N.A., Vatsadze, C.Z., Gromova, T.A., and Gromov, S.P., RF Patent no. 2603135, 2016; Byull. Izobret., 2016, no. 32.Google Scholar
  35. 35.
    Vedernikov, A.I., Nuriev, V.N., Fedorov, O.V., Moiseeva, A.A., Kurchavov, N.A., Kuz’mina, L.G., Freidzon, A.Ya., Pod’yacheva, E.S., Medved’ko, A.V., Vatsadze, S.Z., and Gromov, S.P., Russ. Chem. Bull., 2016, vol. 65, p. 2686. doi 10.1007/s11172-016-1637-zCrossRefGoogle Scholar
  36. 36.
    Pommer, H., Stilz, W., and Stolp, F., FRG Patent no. 1108220, 1961; Chem. Abstr., 1962, vol. 56, p. 73296.Google Scholar
  37. 37.
    Pommer, H. and Stilz, W., FRG Patent no. 1117580, 1961; Chem. Abstr., 1962, vol. 57, p. 23029.Google Scholar
  38. 38.
    Mochida, S., Hirano, K., Satoh, T., and Miura, M., Org. Lett., 2010, vol. 12, p. 5776.CrossRefGoogle Scholar
  39. 39.
    Mochida, S., Hirano, K., Satoh, T., and Miura, M., J. Org. Chem., 2011, vol. 76, p. 3024.CrossRefGoogle Scholar
  40. 40.
    Toyoshima, T., Yoshida, S., and Watanabe, S., Tetrahedron, 2013, vol. 69, p. 1904.CrossRefGoogle Scholar
  41. 41.
    Vedernikov, A.I., Basok, S.S., Gromov, S.P., Kuz’mina, L.G., Avakyan, V.G., Lobova, N.A., Kulygina, E.Y., Titkov, T.V., Strelenko, Y.A., Ivanov, E.I., Howard, J.A.K., and Alfimov, M.V., Russ. J. Org. Chem., 2005, vol. 41, p. 843. doi 10.1007/s11178-005-0255-2CrossRefGoogle Scholar
  42. 42.
    Federov, L.A. and Ermakov, A.N., Spektroskopiya YAMR v neorganicheskom analize (NMR Spectroscopy in Inorganic Analysis), Moscow: Nauka, 1989.Google Scholar
  43. 43.
    Barthram, A.M., Cleary, R.L., Jeffery, J.C., Couchman, S.M., and Ward, M.D., Inorg. Chim. Acta, 1998, vol. 267, p. 1.CrossRefGoogle Scholar
  44. 44.
    Mann, C.K., Barnes, K.K., Electrochemical Reactions in Nonaqueous Systems. A.J. Bard, A.J., Ed., New York: Marcel Decker, Inc., 1970, p. 58.Google Scholar
  45. 45.
    Baizer, M., Organic Electrochemistry, Lund, H., Ed., New York: Marcel Decker, Inc., 1988.Google Scholar
  46. 46.
    Fabre, B., Marrec, P., and Simonet, J., J. Electroanal. Chem., 2000, vol. 485, p. 94.CrossRefGoogle Scholar
  47. 47.
    Wada, F., Hirayama, H., Namiki, H., Kikukawa, K., and Matsuda, T., Bull. Chem. Soc. Jpn., 1980, vol. 53, p. 1473.CrossRefGoogle Scholar
  48. 48.
    Safonova, E.A., Martynov, A.G., Zolotarevskii, V.I., Nefedov, S.E., Gorbunova, Yu.G., and Tsivadze, A.Yu., Dalton Trans., 2015, vol. 44, p. 1366.CrossRefGoogle Scholar
  49. 49.
    Shimakoshi, H., Inaoka, T., and Hisaeda, Y., Tetrahedron Lett., 2003, vol. 44, p. 6421. doi 10.1016/S0040-4039(03)01587-9CrossRefGoogle Scholar
  50. 50.
    Gromov, S.P., Fedorova, O.A., Vedernikov, A.I., Samoshin, V.V., Zefirov, N.S., and Alfimov, M.V., Russ. Chem. Bull., 1995, vol. 44, p. 116. doi 10.1007/BF00696971CrossRefGoogle Scholar
  51. 51.
    Plater, M.J. and Jackson, T., Tetrahedron, 2003, vol. 59, p. 4673.CrossRefGoogle Scholar
  52. 52.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.CrossRefGoogle Scholar
  53. 53.
    Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.CrossRefGoogle Scholar
  54. 54.
    Laikov, D.N. and Ustynyuk, Y.A., Russ. Chem. Bull., 2005, vol. 54, p. 820. doi 10.1007/s11172-005-0329-xCrossRefGoogle Scholar
  55. 55.
    Wolff, S.K. and Ziegler, T., J. Chem. Phys., 1998, vol. 109, p. 895.CrossRefGoogle Scholar
  56. 56.
    Dmitrieva, S.N., Sidorenko, N.I., Kurchavov, N.A., Vedernikov, A.I., Freidzon, A.Ya., Kuz’mina, L.G., Buryak, A.K., Buslaeva, T.M., Bagatur’yants, A.A., Strelenko, Yu.A., Howard, J.A.K., and Gromov, S.P., Inorg. Chem., 2011, vol. 50, p. 7500.CrossRefGoogle Scholar
  57. 57.
    Lee, K.H., Shin, B.H., Shin, K.J., Kim, D.J., and Yu, J., Biochem. Biophys. Res. Commun., 2005, vol. 328, p. 816.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. N. Nuriev
    • 1
  • O. V. Fedorov
    • 2
  • A. A. Moiseeva
    • 1
  • A. Ya. Freidzon
    • 3
  • N. A. Kurchavov
    • 3
  • A. I. Vedernikov
    • 3
  • A. V. Medved’ko
    • 1
  • E. S. Pod’yacheva
    • 1
  • S. Z. Vatsadze
    • 1
  • S. P. Gromov
    • 1
    • 3
    Email author
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Photochemistry Center of the Russian Academy of SciencesMoscowRussia

Personalised recommendations