Russian Journal of Organic Chemistry

, Volume 52, Issue 12, pp 1717–1727 | Cite as

Polystyrene-supported cu(II)-R-Box as recyclable catalyst in asymmetric Friedel–Crafts reaction

  • V. G. Desyatkin
  • M. V. Anokhin
  • V. O. Rodionov
  • I. P. Beletskaya


The complex of copper(II) trifluoromethanesulfonate with chiral isopropyl bis(oxazoline) ligand (i-Pr-Box) was immobilized on accessible and inexpensive Merrifield resin according to a “click” procedure. The resulting catalyst showed high efficiency and recyclability in the asymmetric Friedel–Crafts alkylation of indole and its derivatives. The catalyst can be recycled five times without appreciable loss in activity and enantioselectivity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asymmetric Catalysis In Organic Synthesis, Noyori, R., Ed., New York: Wiley, 1994.Google Scholar
  2. 2.
    Bates, R., Organic Synthesis Using Transition Metals, New York: Wiley, 2012.CrossRefGoogle Scholar
  3. 3.
    Lewis Acids in Organic Synthesis, Yamamoto, H., Ed., New York: Wiley, 2008.Google Scholar
  4. 4.
    Kampen, D., Reisinger, C., and List, B., Asymmetric Organocatalysis (Topics in Current Chemistry, vol. 291), List, B., Ed., Berlin: Springer, 2009, p. 1.Google Scholar
  5. 5.
    Comprehensive Enantioselective Organocatalysis: Catalysi., Reactions, and Applications, Dalko, P.I., Ed., New York: Wiley, 2013, p. 3.Google Scholar
  6. 6.
    Szekely, G., de Sousa, M.C.A., Gil, M., Ferreira, F.C., and Heggie, W., Chem. Rev., 2015, vol. 115, p. 8182.CrossRefGoogle Scholar
  7. 7.
    Fan, Q.-H., Li, Y.-M., and Chan, A.S.C., Chem. Rev., 2002, vol. 102, p. 3385.CrossRefGoogle Scholar
  8. 8.
    Trindade, A.F., Gois, P.M.P., and Afonso, C.A.M., Chem. Rev., 2009, vol. 109, p. 418.CrossRefGoogle Scholar
  9. 9.
    Itsuno, S. and Hassan, M.M., RSC Adv., 2014, vol. 4, p. 52023.CrossRefGoogle Scholar
  10. 10.
    Desimoni, G., Faita, G., and Jørgensen, K.A., Chem. Rev., 2006, vol. 106, p. 3561.CrossRefGoogle Scholar
  11. 11.
    Johnson, J.S. and Evans, D.A., Acc. Chem. Res., 2000, vol. 33, p. 325.CrossRefGoogle Scholar
  12. 12.
    Desimoni, G., Faita, G., and Quadrelli, P., Chem. Rev., 2003, vol. 103, p. 3119.CrossRefGoogle Scholar
  13. 13.
    Rasappan, R., Laventine, D., and Reiser, O., Coord. Chem. Rev., 2008, vol. 252, p. 702.CrossRefGoogle Scholar
  14. 14.
    Rechavi, D. and Lemaire, M., Chem. Rev., 2002, vol. 102, p. 3467.CrossRefGoogle Scholar
  15. 15.
    Fraile, J.M., García, J.I., and Mayoral, J.A., Coord. Chem. Rev., 2008, vol. 252, p. 624.CrossRefGoogle Scholar
  16. 16.
    Burguete, M.I., Fraile, J.M., García, J.I., García-Verdugo, E., Herrerías, C.I., Luis, S.V., and Mayoral, J.A., J. Org. Chem., 2001, vol. 66, p. 8893.CrossRefGoogle Scholar
  17. 17.
    Silva, A.R., Guimarães, V., Carneiro, L., Nunes, N., Borges, S., Pires, J., Martins, Â., and Carvalho, A.P., Microporous Mesoporous Mater., 2013, vol. 179, p. 231.CrossRefGoogle Scholar
  18. 18.
    Clarke, R.J. and Shannon, I.J., Chem. Commun., 2001, p. 1936.Google Scholar
  19. 19.
    Diéz-Barra, E., Fraile, J.M., Garciá, J.I., Garciá-Verdugo, E., Herreriás, C.I., Luis, S.V., Mayoral, J.A., Sánchez-Verdú, P., and Tolosa, J., Tetrahedron: Asymmetry, 2003, vol. 14, p. 773.CrossRefGoogle Scholar
  20. 20.
    Langham, C., Piaggio, P., McMorn, P., Willock, D.J., Hutchings, G.J., Bethell, D., Lee, D.F., Bulman Page, P.C., Sly, C., Hancock, F.E., and King, F., Chem. Commun., 1998, p. 1601.Google Scholar
  21. 21.
    Sakthivel, A., Hijazi, A.K., Hanzlik, M., Chiang, A.S.T., and Kühn, F.E., Appl. Catal., A, 2005, vol. 294, p. 161.CrossRefGoogle Scholar
  22. 22.
    Annunziata, R., Benaglia, M., Cinquini, M., Cozzi, F., and Pitillo, M., J. Org. Chem., 2001, vol. 66, p. 3160.CrossRefGoogle Scholar
  23. 23.
    Fraile, J.M., García, N., and Herrerías, C.I., ACS Catalysis, 2013, vol. 3, p. 2710.CrossRefGoogle Scholar
  24. 24.
    Orlandi, S., Benaglia, M., Dell’Anna, G., and Celentano, G., J. Organomet. Chem., 2007, vol. 692, p. 2120.CrossRefGoogle Scholar
  25. 25.
    Fraile, J.M., Pérez, I., Mayoral, J.A., and Reiser, O., Adv. Synth. Catal., 2006, vol. 348, p. 1680.CrossRefGoogle Scholar
  26. 26.
    Fraile, J.M., Pérez, I., and Mayoral, J.A., J. Catal., 2007, vol. 252, p. 303.CrossRefGoogle Scholar
  27. 27.
    Lee, J.-M., Kim, J., Shin, Y., Yeom, C.-E., Lee, J.E., Hyeon, T., and Moon Kim, B., Tetrahedron: Asymmetry, 2010, vol. 21, p. 285.CrossRefGoogle Scholar
  28. 28.
    Torres-Werle, M., Nano, A., Maisse-Francois, A., and Bellemin-Laponnaz, S., New J. Chem., 2014, vol. 38, p. 4748.CrossRefGoogle Scholar
  29. 29.
    Lee, A., Kim, W., Lee, J., Hyeon, T., and Kim, B.M., Tetrahedron: Asymmetry, 2004, vol. 15, p. 2595.CrossRefGoogle Scholar
  30. 30.
    Rasappan, R., Olbrich, T., and Reiser, O., Adv. Synth. Catal., 2009, vol. 351, p. 1961.CrossRefGoogle Scholar
  31. 31.
    Liu, H. and Du, D.M., Eur. J. Org. Chem., 2010, p. 2121.Google Scholar
  32. 32.
    Corma, A., Garcia, H., Moussaif, A., Sabater, M.J., Zniber, R., and Redouane, A., Chem. Commun., 2002, p. 1058.Google Scholar
  33. 33.
    Glos, M. and Reiser, O., Org. Lett., 2000, vol. 2, p. 2045.CrossRefGoogle Scholar
  34. 34.
    Hager, M., Wittmann, S., Schätz, A., Pein, F., Kreitmeier, P., and Reiser, O., Tetrahedron: Asymmetry, 2010, vol. 21, p. 1194.CrossRefGoogle Scholar
  35. 35.
    Zhuang, W., Hansen, T., and Jørgensen, K.A., Chem. Commun., 2001, p. 347.Google Scholar
  36. 36.
    Jørgensen, K.A., Synthesis, 2003, p. 1117.Google Scholar
  37. 37.
    Poulsen, T.B. and Jørgensen, K.A., Chem. Rev., 2008, vol. 108, p. 2903.CrossRefGoogle Scholar
  38. 38.
    Meldal, M. and Tornøe, C.W., Chem. Rev., 2008, vol. 108, p. 2952.CrossRefGoogle Scholar
  39. 39.
    Schätz, A., Grass, R.N., Kainz, Q., Stark, W.J., and Reiser, O., Chem. Mater., 2010, vol. 22, p. 305.CrossRefGoogle Scholar
  40. 40.
    Schätz, A., Hager, M., and Reiser, O., Adv. Funct. Mater., 2009, vol. 19, p. 2109.CrossRefGoogle Scholar
  41. 41.
    Gaab, M., Bellemin-Laponnaz, S., and Gade, L.H., Chem. Eur. J., 2009, vol. 15, p. 5450.CrossRefGoogle Scholar
  42. 42.
    Chan, T.R., Hilgraf, R., Sharpless, K.B., and Fokin, V.V., Org. Lett., 2004, vol. 6, p. 2853.CrossRefGoogle Scholar
  43. 43.
    Zhou, J. and Tang, Y., Chem. Commun., 2004, p. 432.Google Scholar
  44. 44.
    Zhou, J., Ye, M.-C., Huang, Z.-Z., and Tang, Y., J. Org. Chem., 2004, vol. 69, p. 1309.CrossRefGoogle Scholar
  45. 45.
    Yamazaki, S. and Iwata, Y., J. Org. Chem., 2006, vol. 71, p. 739.CrossRefGoogle Scholar
  46. 46.
    Wu, J., Wang, D., Wu, F., and Wan, B., J. Org. Chem., 2013, vol. 78, p. 5611.CrossRefGoogle Scholar
  47. 47.
    Wen, L., Shen, Q., Wan, X., and Lu, L., J. Org. Chem., 2011, vol. 76, p. 2282.CrossRefGoogle Scholar
  48. 48.
    Zhou, Y.-Y., Sun, X.-L., Zhu, B.-H., Zheng, J.-C., Zhou, J.-L., and Tang, Y., Synlett, 2011, p. 935.Google Scholar
  49. 49.
    Sun, Y.-J., Li, N., Zheng, Z.-B., Liu, L., Yu, Y.-B., Qin, Z.-H., and Fu, B., Adv. Synth. Catal., 2009, vol. 351, p. 3113.CrossRefGoogle Scholar
  50. 50.
    Liu, L., Li, J., Wang, M., Du, F., Qin, Z., and Fu, B., Tetrahedron: Asymmetry, 2011, vol. 22, p. 550.CrossRefGoogle Scholar
  51. 51.
    Liu, L., Ma, H.L., Xiao, Y.M., Du, F.P., Qin, Z.H., Li, N., and Fu, B., Chem. Commun., 2012, vol. 48, p. 9281.CrossRefGoogle Scholar
  52. 52.
    Desimoni, G., Faita, G., and Quadrelli, P., Chem. Rev., 2013, vol. 113, p. 5924.CrossRefGoogle Scholar
  53. 53.
    Shiri, M., Heravi, M.M., and Soleymanifard, B., Tetrahedron, 2012, vol. 68, p. 6593.CrossRefGoogle Scholar
  54. 54.
    Liu, Y.L., Shang, D.J., Zhou, X., Zhu, Y., Lin, L.L., Liu, X.H., and Feng, X.M., Org. Lett., 2010, vol. 12, p. 180.CrossRefGoogle Scholar
  55. 55.
    Jensen, K.B., Thorhauge, J., Hazell, R.G., and Jørgensen, K.A., Angew. Chem., Int. Ed., 2001, vol. 40, p. 160.CrossRefGoogle Scholar
  56. 56.
    Ma, H.L., Li, J.Q., Sun, L., Hou, X.H., Zhang, Z.H., and Fu, B., Tetrahedron, 2015, vol. 71, p. 3625.CrossRefGoogle Scholar
  57. 57.
    Epifano, F., Genovese, S., Rosati, O., Tagliapietra, S., Pelucchini, C., and Curini, M., Tetrahedron Lett., 2011, vol. 52, p. 568.CrossRefGoogle Scholar
  58. 58.
    Li, J., Chen, H.L., Liu, L., and Fu, B., Molecules, 2010, vol. 15, p. 8582.CrossRefGoogle Scholar
  59. 59.
    Liu, Y.L., Shang, D.J., Zhou, X., Liu, X.H., and Feng, X.M., Chem. Eur. J., 2009, vol. 15, p. 2055.CrossRefGoogle Scholar
  60. 60.
    Harrington, P. and Kerr, M.A., Can. J. Chem., 1998, vol. 76, p. 1256.CrossRefGoogle Scholar
  61. 61.
    Schatz, A., Rasappan, R., Hager, M., Gissibl, A., and Reiser, O., Chem. Eur. J., 2008, vol. 14, p. 7259.CrossRefGoogle Scholar
  62. 62.
    Jia, S.J. and Du, D.M., Tetrahedron: Asymmetry, 2014, vol. 25, p. 980.CrossRefGoogle Scholar
  63. 63.
    Desimoni, G., Faita, G., Toscanini, M., and Boiocchi, M., Chem. Eur. J., 2008, vol. 14, p. 3630.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. G. Desyatkin
    • 1
  • M. V. Anokhin
    • 1
  • V. O. Rodionov
    • 2
  • I. P. Beletskaya
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.King Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations