Russian Journal of Organic Chemistry

, Volume 51, Issue 8, pp 1061–1070 | Cite as

New approach to the synthesis of macrocyclic core of cytotoxic lactone (+)-neopeltolide. Synthesis of C7–C14 segment basing on cyclopropanol intermediates

Article

Abstract

A new retrosynthetic procedure was developed for the synthesis of the macrocyclic core of a cytotoxic lactone (+)-neopeltolide utilizing cyclopropanol intermediates. The synthesis was suggested and carried out of the C7–C16 segment of (+)-neopeltolide to obtain (4S,6S)-6-[(2S)-2-hydroxypentyl]-4-methyltetrahydro-2H-pyran-2-one. The possibility was demonstrated of a formal synthesis based on the obtained product of the potential antitumor pharmaceutical (+)-neopeltolide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright, A.E., Botelho, J.C., Guzman, E., Harmody, D., Linley, P., McCarthy, P.J., Pitts, T.P., Pomponi, S.A., and Reed, J.K., J. Nat. Prod., 2007, vol. 70, p. 412.CrossRefGoogle Scholar
  2. 2.
    Youngsaye, W., Lowe, J.T., Pohlki, F., Ralifo, P., and Panek, J.S., Angew. Chem., Int. Ed., 2007, vol. 46, p. 9211.CrossRefGoogle Scholar
  3. 3.
    Custar, D.W., Zabawa, T.P., and Scheidt, K.A., J. Am. Chem. Soc., 2008, vol. 130, p. 804.CrossRefGoogle Scholar
  4. 4.
    Ulanovskaya, O.A., Janjic, J., Suzuki, M., Sabharwal, S.S., Schumacker, P.T., Kron, S.J., and Kozmin, S.A., Nat. Chem. Biol., 2008, vol. 4, p. 418.CrossRefGoogle Scholar
  5. 5.
    Woo, S.K., Kwon, M.S., and Lee, E., Angew.Chem., Int. Ed., 2008, vol. 47, p. 3242.CrossRefGoogle Scholar
  6. 6.
    Vintonyak, V.V. and Maier, M.E., Org. Lett., 2008, vol. 10, p. 1239.CrossRefGoogle Scholar
  7. 7.
    Fuwa, H., Naito, S., Goto, T., and Sasaki, M., Angew. Chem., Int. Ed., 2008, vol. 47, p. 4737.CrossRefGoogle Scholar
  8. 8.
    Paterson, I. and Miller, N.A., Chem. Commun., 2008, p. 4708.Google Scholar
  9. 9.
    Kartika, R., Gruffi, Tr., and Taylor, R.E., Org. Lett., 2008, vol. 10, p. 5047.CrossRefGoogle Scholar
  10. 10.
    Vintonyak, V.V., Kunze, B., Sasse, F., and Maier, M.E., Chem. Eur. J., 2008, vol. 14, p. 11132.CrossRefGoogle Scholar
  11. 11.
    Gallon, J., Reymond, S., and Cossy, J., C. R. Chimie, 2008, p. 1463.Google Scholar
  12. 12.
    Custar, D.W., Zabawa, T.P., Hines, J., Crews, C.M., and Scheidt, K.A., J. Am. Chem. Soc., 2009, vol. 131, p. 12406.CrossRefGoogle Scholar
  13. 13.
    Tu, W. and Floreancig, P.E., Angew. Chem., Int. Ed., 2009, vol. 48, p. 4567.CrossRefGoogle Scholar
  14. 14.
    Kim, H., Park, Y., and Hong, J., Angew. Chem., Int. Ed., 2009, vol. 48, p. 7577.CrossRefGoogle Scholar
  15. 15.
    Guinchard, X. and Roulland, E., Org. Lett., 2009, vol. 11, p. 4700.CrossRefGoogle Scholar
  16. 16.
    Fuwa, H., Saito, A., Naito, S., Konoki, K., Yotsu- Yamashita, M., and Sasaki, M., Chem. Eur. J., 2009, vol. 15, p. 12807.CrossRefGoogle Scholar
  17. 17.
    Yadav, J.S., Kumar, G.G., and Kumar, S.N., Tetrahedron, 2010, vol. 66, p. 480.CrossRefGoogle Scholar
  18. 18.
    Cui, Y., Wangyang, T., and Floreancig, P.E., Tetrahedron, 2010, vol. 66, p. 4867.CrossRefGoogle Scholar
  19. 19.
    Martinez-Solorio, D. and Jennings, M.P., J. Org. Chem., 2010, vol. 75, p. 4095.CrossRefGoogle Scholar
  20. 20.
    Fuwa, H., Saito, A., and Sasaki, M., Angew. Chem., Int. Ed., 2010, vol. 49, p. 3041.CrossRefGoogle Scholar
  21. 21.
    Florence, G.J. and Cadou, R.F., Tetrahedron Lett., 2010, vol. 51, p. 5761.CrossRefGoogle Scholar
  22. 22.
    Hartmann, E. and Oestreich, M., Angew. Chem., Int. Ed., 2010, vol. 49, p. 6195.CrossRefGoogle Scholar
  23. 23.
    Yang, Z., Zhang, B., Zhao, G., Yang, J., Xie, X., and She, X., Org. Lett., 2011, vol. 13, p. 5916.CrossRefGoogle Scholar
  24. 24.
    Cui, Y., Balachandran, R., Day, B.W., and Floreancig, P.E., J. Org. Chem., 2012, vol. 77, p. 2225.CrossRefGoogle Scholar
  25. 25.
    Gangavaram, S., Reddy, S., and Kallaganti, V.S.R., Org. Biomol. Chem., 2012, vol. 10, p. 3689.CrossRefGoogle Scholar
  26. 26.
    Raghavan, S. and Samanta, P.K., Org. Lett., 2012, vol. 14, p. 2346.CrossRefGoogle Scholar
  27. 27.
    Athe, S., Chandrasekhar, B., Roy, S., Pradhan, T.K., and Ghosh, S.J., Org. Chem., 2012, vol. 77, p. 9840.CrossRefGoogle Scholar
  28. 28.
    Fuwa, H., Kawakami, M., Noto, K., Muto, T., Suga, Y., Konoki, K., Yotsu-Yamashita, M., and Sasaki, M., Chem. Eur. J., 2013, vol. 19, p. 8100.CrossRefGoogle Scholar
  29. 29.
    Ghosh, A.K., Shurrush, K.A., and Dawson, Z.L., Org. Biomol. Chem., 2013, vol. 11, p. 7768.CrossRefGoogle Scholar
  30. 30.
    Fuwa, H., Noguchi, T., Kawakami, M., and Sasaki, M., Bioorg. Med. Chem. Lett., 2014, vol. 24, p. 2415.CrossRefGoogle Scholar
  31. 31.
    Sethofer, S.G., Staben, S.T., Hung, O.Y., and Toste, F.D., Org. Lett., 2008, vol. 10, p. 4315.CrossRefGoogle Scholar
  32. 32.
    Keaton, K.A. and Phillips, A.J., Org. Lett., 2008, vol. 10, p. 1083.CrossRefGoogle Scholar
  33. 33.
    Mineeva, I.V., Russ. J. Org. Chem., 2008, vol. 44, p. 1261.CrossRefGoogle Scholar
  34. 34.
    Gollner, A. and Mülzer, J., Org. Lett., 2008, vol. 10, p. 4701.CrossRefGoogle Scholar
  35. 35.
    Haym, I. and Brimble, M.A., Synlett., 2009, p. 2315.Google Scholar
  36. 36.
    Kim, K. and Cha, J.K., Angew. Chem., Int. Ed., 2009, vol. 48, p. 5334.CrossRefGoogle Scholar
  37. 37.
    Hurski, A.L., Sokolov, N.A., and Kulinkovich, O.G., Tetrahedron, 2009, vol. 65, p. 3518.CrossRefGoogle Scholar
  38. 38.
    Odinokov, V.N., Shakurova, E.R., Halilov, L.M., and Dzhemilev, U.M., Russ. J. Org. Chem., 2009, vol. 45, p. 1464.CrossRefGoogle Scholar
  39. 39.
    Kovalenko, V.N., Masalov, N.V., and Kulinkovich, O.G., Russ. J. Org. Chem., 2009, vol. 45, p. 1318.CrossRefGoogle Scholar
  40. 40.
    Gaucher, X., Jida, M., and Ollivier, J., Synlett., 2009, p. 3320.Google Scholar
  41. 41.
    Mineeva, I.V. and Kulinkovich, O.G., Russ. J. Org. Chem., 2009, vol. 45, p. 1623.CrossRefGoogle Scholar
  42. 42.
    Gollner, A., Altmann, K.-H., Gertsch, J., and Mülzer, J., Chem. Eur. J., 2009, vol. 15, p. 5979.CrossRefGoogle Scholar
  43. 43.
    Mineeva, I.V., Candidate Sci. (Chem.) Dissertation, Minsk, 2010.Google Scholar
  44. 44.
    Kovalenko, V.N., Sokolov, N.A., and Kulinkovich, O.G., Russ. J. Org. Chem., 2010, vol. 46, p. 1702.CrossRefGoogle Scholar
  45. 45.
    Hurski, A.L. and Kulinkovich, O.G., Tetrahedron Lett., 2010, vol. 51, p. 3497.CrossRefGoogle Scholar
  46. 46.
    Mineyeva, I.V. and Kulinkovich, O.G., Tetrahedron Lett., 2010, vol. 51, p. 1836.CrossRefGoogle Scholar
  47. 47.
    Kananovich, D.G., Zubrytski, D.M., and Kulinkovich, O.G., Synlett., 2010, p. 1043.Google Scholar
  48. 48.
    Hurski, A.L. and Kulinkovich, O.G., Russ. J. Org. Chem., 2011, vol. 47, p. 1653.CrossRefGoogle Scholar
  49. 49.
    Ye, Z., Gao, T., and Zhao, G., Tetrahedron, 2011, vol. 67, p. 5979.CrossRefGoogle Scholar
  50. 50.
    Shklyaruck, D. and Matiushenkov, E., Tetrahedron: Asymm., 2011, vol. 22, p. 1448.CrossRefGoogle Scholar
  51. 51.
    Astashko, D.A. and Tyvorskii, V.I., Tetrahedron Lett., 2011, vol. 52, p. 4792.CrossRefGoogle Scholar
  52. 52.
    Haym, I. and Brimble, M.A., Org. Biomol. Chem., 2012, vol. 10, p. 7649.CrossRefGoogle Scholar
  53. 53.
    Mineeva, I.V., Russ. J. Org. Chem., 2012, vol. 48, p. 977.CrossRefGoogle Scholar
  54. 54.
    McCabe, J. and Phillips, A.J., Tetrahedron, 2013, vol. 69, p. 5710.CrossRefGoogle Scholar
  55. 55.
    Mineeva, I.V., Russ. J. Org. Chem., 2013, vol. 49, p. 253.CrossRefGoogle Scholar
  56. 56.
    Mineeva, I.V., Russ. J. Org. Chem., 2013, vol. 49, p. 712.CrossRefGoogle Scholar
  57. 57.
    Mineeva, I.V., Russ. J. Org. Chem., 2013, vol. 49, p. 838.CrossRefGoogle Scholar
  58. 58.
    Mineeva, I.V., Russ. J. Org. Chem., 2013, vol. 49, p. 979.CrossRefGoogle Scholar
  59. 59.
    Mineeva, I.V., Russ. J. Org. Chem., 2013, vol. 49, p. 1647.CrossRefGoogle Scholar
  60. 60.
    Mineeva, I.V., Russ. J. Org. Chem., 2014, vol. 50, p. 100.CrossRefGoogle Scholar
  61. 61.
    Mineeva, I.V., Russ. J. Org. Chem., 2014, vol. 50, p. 168.CrossRefGoogle Scholar
  62. 62.
    Mineeva, I.V., Russ. J. Org. Chem., 2014, vol. 50, p. 398.CrossRefGoogle Scholar
  63. 63.
    Kovalenko, V.N. and Mineeva, I.V., Russ. J. Org. Chem., 2014, vol. 50, p. 934.CrossRefGoogle Scholar
  64. 64.
    Mineeva, I.V., Russ. J. Org. Chem., 2014, vol. 50, p. 1558CrossRefGoogle Scholar
  65. 65.
    Mineeva, I.V., Masyuk, V.S., Kovalenko, V.N., and Bondarenko, M.M., Russ. J. Org. Chem., 2014, vol. 50, p. 1621.CrossRefGoogle Scholar
  66. 66.
    Shklyaruck, D., Tetrahedron: Asymm., 2014, vol. 25, p. 644.CrossRefGoogle Scholar
  67. 67.
    Han, W.-B., Li, S.-G., Lu, X.-W., and Wu, Y., Eur. J. Org. Chem., 2014, vol. 30, p. 3841.CrossRefGoogle Scholar
  68. 68.
    Zubrytski, D.M., Kananovich, D.G., and Kulinkovich, O.G., Tetrahedron, 2014, vol. 70, p. 2944.CrossRefGoogle Scholar
  69. 69.
    Gibson, D.H. and De Puy, Ch., Chem. Rev., 1974, vol. 74, p. 605.CrossRefGoogle Scholar
  70. 70.
    Kulinkovich, O.G. and de Meijere, A., Chem. Rev., 2000, vol. 100, p. 2789.CrossRefGoogle Scholar
  71. 71.
    Kulinkovich, O.G., Chem. Rev., 2003, vol. 103, p. 2597.CrossRefGoogle Scholar
  72. 72.
    Kulinkovich, O.G., Russ. Chem. Bull., 2004, vol. 53, p. 1065.CrossRefGoogle Scholar
  73. 73.
    Wolan, A. and Six, Y., Tetrahedron, 2010, vol. 66, p. 15.CrossRefGoogle Scholar
  74. 74.
    Keck, G.E., Tarbet, Kh., and Geraci, L.S., J. Am. Chem. Soc., 1993, vol. 115, p. 8467.CrossRefGoogle Scholar
  75. 75.
    Keck, G.E. and Geraci, L.S., Tetrahedron Lett., 1993, vol. 34, p. 7827.CrossRefGoogle Scholar
  76. 76.
    Costa, A.L., Piazza, M.G., Tagliavini, E., Trombini, C., and Umani-Ronchi, A., J. Am. Chem. Soc., 1993, vol. 115, p. 7001.CrossRefGoogle Scholar
  77. 77.
    Fallner, J.W., Sams, D.W.I., and Liu, X., J. Am. Chem. Soc., 1996, vol. 118, p. 1217.CrossRefGoogle Scholar
  78. 78.
    Keck, G.E. and Krishnamurthy, D., Org. Synth., 1998, vol. 75, p. 12.CrossRefGoogle Scholar
  79. 79.
    Williams, D.R., Brooks, D.A., Meyer, K.G., and Clark, M.P., Tetrahedron Lett., 1998, vol. 39, p. 7251.CrossRefGoogle Scholar
  80. 80.
    Keck, G.E. and Yu, T., Org. Lett., 1999, vol. 1, p. 289.CrossRefGoogle Scholar
  81. 81.
    Doucet, H. and Santelli, M., Tetrahedron: Asymm., 2000, vol. 11, p. 4163.CrossRefGoogle Scholar
  82. 82.
    Sanchez, C.C. and Keck, G.E., Org. Lett., 2005, vol. 7, p. 3053.CrossRefGoogle Scholar
  83. 83.
    Von Gyldenfeldt, F., Marton, D., and Tagliavini, G., Organometallics, 1994, vol. 13, p. 906.CrossRefGoogle Scholar
  84. 84.
    Carofiglio, T., Marton, D., and Tagliavini, G., Organometallics, 1992, vol. 11, p. 2961.CrossRefGoogle Scholar
  85. 85.
    Dale, J.A., Dull, D.L., and Mosher, H.S., J. Org. Chem., 1969, vol. 34, p. 2543.CrossRefGoogle Scholar
  86. 86.
    Berliner, M.A. and Belecki, K., J. Org. Chem., 2005, vol. 70, p. 9618.CrossRefGoogle Scholar
  87. 87.
    Yadav, J.S. and Reddy, P.S.R., Synthesis, 2007, p. 1070.Google Scholar
  88. 88.
    Kurosu, M. and Lorca, M., Tetrahedron Lett., 2002, vol. 43, p. 1765.CrossRefGoogle Scholar
  89. 89.
    Kurosu, M. and Lorca, M., Synlett., 2005, p. 1109.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Belorussian State UniversityMinskBelarus

Personalised recommendations