Advertisement

Russian Journal of Organic Chemistry

, Volume 50, Issue 2, pp 275–279 | Cite as

Synthesis of 1-(1-aryl-1H-1,2,3-triazol-4-yl)-β-carboline derivatives

  • N. T. Pohodylo
  • V. S. Matiichuk
  • M. D. ObushakEmail author
Article
  • 242 Downloads

Abstract

Reaction of 5-methyl-1-aryl-1H-1,2,3-triazole-4-carbocylic acid chlorides with tryptamine derivatives afforded substituted 1-aryl-N-[2-(1H-indol-3-yl)ethyl]-5-methyl-1H-1,2,3-triazole-4-carboxamides. At heating these compounds in toluene in the presence of POCl3 and P2O5 Bischler-Napieralski cyclization occurs giving 1-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-4,9-dihydro-3H-β-carbolines that can be transformed into β-carboline and tetrahydro-β-carboline derivatives.

Keywords

Indole Carboline Tryptamine Derivative Potassium Azide Napieralski Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentley, K.W., Nat. Prod. Rep., 2004, vol. 21, p. 395.CrossRefGoogle Scholar
  2. 2.
    Brown, R.T., Indoles, Saxion, J.E., Ed., New York: Wiley-Intersci, 1983.Google Scholar
  3. 3.
    Taylor, M.S. and Jacobsen, E.N., J. Am. Chem. Soc., 2004, vol. 126, p. 10558.CrossRefGoogle Scholar
  4. 4.
    Gremmen, C., Willemse, B., Wanner, M.J., and Koomen, G.-J., Org. Lett., 2000, vol. 2, p. 1955.CrossRefGoogle Scholar
  5. 5.
    Ronner, B., Lerche, H., Bergmuller, W., Freilinger, C., Severin, T., and Pischetsrieder, M., J. Agric. Food. Chem., 2000, vol. 48, p. 2111.CrossRefGoogle Scholar
  6. 6.
    Rabindran, S.K., He, H., Singh, M., Brown, E., Collins, K.I., Annable, T., and Greenberger, L.M., Cancer Res., 1998, vol. 58, p. 5850.Google Scholar
  7. 7.
    Audia, J.E., Evrard, D.A., Murdoch, G.R., Droste, J.J., Nissen, J.S., Schenck, K.W., Fludzinski P., Lucaites, V.L. Nelson, D.L. and Cohen, M. L., J. Med. Chem., 1996, vol. 39, p. 2773.CrossRefGoogle Scholar
  8. 8.
    Cox, E.D. and Cook, J.M., Chem. Rev., 1995, vol. 95, 1797.Google Scholar
  9. 9.
    Chrzanowska, M. and Rozwadowska, M.D., Chem. Rev., 2004, vol. 104, p. 3341.CrossRefGoogle Scholar
  10. 10.
    Love, B.E., Org. Prep. Proc. Int.: New J. Org. Synth., 1996, vol. 28, p. 1.CrossRefGoogle Scholar
  11. 11.
    Fodor, G. and Nagubandi, S., Tetrahedron, 1980, vol. 36, p. 1279.CrossRefGoogle Scholar
  12. 12.
    Rozwadowska, M.D., Heterocycles, 1994, vol. 39, p. 903.CrossRefGoogle Scholar
  13. 13.
    Ishikawa, T., Shimooka, K., Narioka, T., Noguchi, S., Saito, T., Ishikawa, A., Yamazaki, E., Harayama, T., Seki, H., and Yamaguchi, K., J. Org. Chem., 2000, vol. 65, p. 9143.CrossRefGoogle Scholar
  14. 14.
    Jullian, V., Quirion, J.-C. and Hussion, H.-P., Eur. J. Org. Chem., 2000, p. 1319.Google Scholar
  15. 15.
    Capilla, A.S., Romero, M., Pujol, M.D., Caignard, D.H., and Renard, P., Tetrahedron, 2001, vol. 57, p. 8297.CrossRefGoogle Scholar
  16. 16.
    Batra, S., Sabnis, Y.A., Rosenthal, P.J., and Avery, M.A., Bioorg. Med. Chem., 2003, vol. 11, p. 2293.CrossRefGoogle Scholar
  17. 17.
    Vecchietti, V., Clarke, G.D., Colle, R., Dondio, G., Giardina, G., Petrone, G., and Sbacchi, M., J. Med. Chem., 1992, vol. 35, p. 2970.CrossRefGoogle Scholar
  18. 18.
    Judeh, Z.M.A., Ching, C.B., Bu, J., and McCluskey, A., Tetrahedron Lett., 2002, vol. 43, p. 5089.CrossRefGoogle Scholar
  19. 19.
    Saito, T., Yoshida, M., and Ishikawa, T., Heterocycles, 2001, vol. 54, p. 437.CrossRefGoogle Scholar
  20. 20.
    Larsen, R.D., Reamer, R.A., Corley, E.G., Davis, P., Grabowski, E.J.J., Reider, P.J., and Shinkai, I., J. Org. Chem., 1991, vol. 56, p. 6034.CrossRefGoogle Scholar
  21. 21.
    Bhattacharijya, A., Chattopadhyay, P., Bhaumik, M., and Pakrashi, S.C., J. Chem. Res. Synop., 1989, p. 228.Google Scholar
  22. 22.
    Wang, Y.-C. and Georghiou, P.E., Synthesis, 2002, p. 2187.Google Scholar
  23. 23.
    Vaccari, D., Davoli, P., Ori, C., Spaggiari, A., and Prati, F., Synlett., 2008, p. 2807.Google Scholar
  24. 24.
    Pokhodylo, N.T., Shiika, O.Ya., Matiichuk, V.S., and Obushak, N.D., Russ. J. Org. Chem., 2010, vol. 46, p. 417.CrossRefGoogle Scholar
  25. 25.
    Quadbeck, J. and Rohm, E., Hoppe-Seyler’s Z. Physiol. Chem., 1954, vol. 297, p. 229.CrossRefGoogle Scholar
  26. 26.
    Spath, E. and Lederer, E., Chem. Ber., 1930, vol. 63, p. 120.CrossRefGoogle Scholar
  27. 27.
    Adlerova, E., Hnmvsova, J., Novak, P., and Rajsner, S., Coll. Czech. Chem. Commun., 1960, vol. 25, p. 784.CrossRefGoogle Scholar
  28. 28.
    Audia, J.E., Droste, J.J., Evrard, D.A., Fludzinski, P., Murdoch, G.L., and Nelson, D.L., US Patent 5500431, 1996; Chem. Abstr., 1996, vol. 124, 333120.Google Scholar
  29. 29.
    Nicolaou, K.C., Mathison, C.Je.N., and Montagnon, T., Angew. Chem., Int. Ed., 2003, vol. 42, p. 4077.CrossRefGoogle Scholar
  30. 30.
    Still, W.J. and McNulty, J., J. Chem. Soc., Perkin Trans. I, 1994, p. 1329.Google Scholar
  31. 31.
    Awuah, E. and Capretta, A., J. Org. Chem., 2010, vol. 75, p. 5627.CrossRefGoogle Scholar
  32. 32.
    Org. Synth., New York: J. Wiley, 1951, vol. 31, p. 14.Google Scholar
  33. 33.
    Sun, X.-W., Xu, P.-F., and Zhang, Z.-Y., Magn. Res. Chem., 1998, vol. 36, p. 459.CrossRefGoogle Scholar
  34. 34.
    Obushak, N.D., Pokhodylo, N.T., Pidlypnyi, N.I., and Matiichuk, V.S., Russ. J. Org. Chem., 2008, vol. 44, p. 1522.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. T. Pohodylo
    • 1
  • V. S. Matiichuk
    • 1
  • M. D. Obushak
    • 1
    Email author
  1. 1.Ivan Franko Lviv National UniversityLvivUkraine

Personalised recommendations