Skip to main content
Log in

Quantum-chemical calculations of NMR chemical shifts of organic molecules: XII. Calculation of the 13C NMR chemical shifts of fluoromethanes at the DFT level

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Calculation was carried out of chemical shifts in 13C NMR spectra for a series of fluoromethanes CH n F4−n (n = 0–4) by the methods of the electron density functional theory GIAO-DFT taking in consideration the solvent effect in the framework of the polarizable continuum model Tomasi IEF-PCM. The best results were obtained at the use of Keal-Tozer KT3 functional combined with Pople standard basis sets 6-311G(d,p) and 6-311++G(d,p), and also with Jensen special set pcS-2 containing tight p-functions. The optimum reference in the calculation of chemical shifts in 13C NMR spectra for the fluoromethanes series is TMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernyshev, K.A., Krivdin, L.B., Fedorov, S.V., Arbuzova, S.N., and Ivanova, N.I., Russ. J. Org. Chem., 2013, vol. 49, p. 1420.

    Article  CAS  Google Scholar 

  2. Mulder, F.A.A. and Filatov, M., Chem. Soc. Rev., 2010, vol. 39, p. 578.

    Article  CAS  Google Scholar 

  3. Inħek, J. and Paldus, J., J. Chem. Phys., 1967, vol. 47, p. 3976.

    Article  Google Scholar 

  4. Helgaker, T., Coriani, S., Jshrgensen, P., Kristensen, K., Olsen, J., and Ruud, K., Chem. Rev., 2012, vol. 112, p. 543; Lutnaes, O.B., Helgaker, T. and Jaszunski, M., Mol. Phys., 2010, p. 2579.

    Article  CAS  Google Scholar 

  5. Rusakov, Yu.Yu. and Krivdin, L.B., Russ. Chem. Rev., 2013, vol. 82, p. 99.

    Article  Google Scholar 

  6. Ditchfield, R., Mol. Phys., 1974, 27, 789; Wolinski, K., Hinton, J.F., and Pulay, P., J. Am. Chem. Soc., 1990, vol. 112, p. 8251.

    Article  CAS  Google Scholar 

  7. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, p. 2999; Tomasi, J., Mennucci, B., and Cances, E.O., J. Struc. Chem. THEOCHEM., 1999, vol. 464, p. 211.

    Article  CAS  Google Scholar 

  8. Keal, T.W. and Tozer, D.J., J. Chem. Phys., 2004, vol. 121, p. 5654.

    Article  CAS  Google Scholar 

  9. Jensen, F., J. Chem. Theory Comput., 2008, vol. 4, p. 719.

    Article  CAS  Google Scholar 

  10. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648; Lee, C., Yang, W., Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  11. Perdew, J.P. and Wang, Y., Phys. Rev. B, 1992, 45, p. 13244.

    Article  Google Scholar 

  12. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865; Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, p. 6158.

    Article  CAS  Google Scholar 

  13. Krisnan, R., Binkley, J.S., Seeger, R., and Pople, J. A., J. Chem. Phys., 1980, vol. 72, p. 650.

    Article  Google Scholar 

  14. Dunning, T.H., J. Chem. Phys., 1989, vol. 90, p. 1007; Kendall, R.A., Dunning, T.H., Harrison, R.J., J. Chem. Phys., 1992, vol. 96, p. 6796; Woon, D.E., and Dunning, T.H., J. Chem. Phys., 1993, 98, p. 1358.

    Article  CAS  Google Scholar 

  15. Kutzelnigg, W., Fleischer, U., and Schindler, M., NMR — Basic Principles and Progress, 1990, vol. 23, p. 165.

    Article  Google Scholar 

  16. Jensen, F., J. Chem. Phys., 2001, vol. 115, p. 9113; Jensen, F., and Helgaker, T., J. Chem. Phys., 2004, vol. 121, p. 3462.

    Article  CAS  Google Scholar 

  17. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Article  CAS  Google Scholar 

  18. DALTON. A Molecular Electronic Structure Program, Release Dalton 2011, 2011, http://daltonprogram.org/.

  19. Harris, R.K., Becker, E.D., Cabral, de, Menezes, S.M., Goodfellow, R, and Granger, P., Pure Appl. Chem., 2001, vol. 73, p. 1795; Harris, R.K., Becker, E.D., Cabral de Menezes, S.M., Granger, P., Hoffman, R.E., and Zilm, K.W., Pure Appl. Chem., 2008, vol. 80, p. 59.

    Article  CAS  Google Scholar 

  20. Grant, D.M., Paul, E.G. J. Am. Chem. Soc., 1964, vol. 86, p. 2984; Somayajulu, G.R., Kennedy, J.R., Vickrey, T.M., and Zwolinski, B.J., J. Magn. Res., 1979, vol. 33, p. 559; Pretsch, E., Bühlmann, P., and Affolter, C., Structure Determination of Organic Compounds, Tables of Spectral Data, Berlin: Springer-Verlag, 2000.

    Article  CAS  Google Scholar 

  21. Markwick, P.R.L. and Sattler, M., J. Am. Chem. Soc., 2004, vol. 126, p. 11424; Moon, S. and Case, D.A., J. Comput. Chem., 2006, vol. 27, p. 825.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Krivdin.

Additional information

Original English Text © S.V. Fedorov, Yu.Yu. Rusakov, L.B. Krivdin, 2014, published in Zhurnal Organicheskoi Khimii, 2014, Vol. 50, No. 2, pp. 172–176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, S.V., Rusakov, Y.Y. & Krivdin, L.B. Quantum-chemical calculations of NMR chemical shifts of organic molecules: XII. Calculation of the 13C NMR chemical shifts of fluoromethanes at the DFT level. Russ J Org Chem 50, 160–164 (2014). https://doi.org/10.1134/S107042801402002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042801402002X

Keywords

Navigation