Skip to main content
Log in

Synthesis of Clay-Based Catalysts for the Degradation of Polyolefins by Mechanical Activation

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

An assessment was made of the catalytic properties of samples of clay material from the Shebekinskii district of the Belgorod oblast, subjected to mechanical activation during the conversion of a polyolefin–motor oil mixture into liquid hydrocarbons. It was shown that these catalysts under experimental conditions are not capable of converting the polyethylene–motor oil mixture into liquid hydrocarbons, but are very effective in replacing polyethylene with polypropylene. Varying the time of mechanical action on clay materials affects the yield of products of thermocatalytic degradation of polypropylene. The maximum yield of target products (53 wt %) was detected during the thermocatalytic degradation of a polypropylene–motor oil mixture in the presence of a catalyst obtained after grinding the initial clay material for 8 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Marcilla, A., Gomez-Siurana, A., and Berenguer, D., Appl. Catal. A: General, 2006, vol. 301, pp. 222–231. https://doi.org/10.1016/j.apcata.2005.12.018

    Article  CAS  Google Scholar 

  2. Obali, Z., Sezgi,, N.A., and Dogu, T., Chem. Eng. J., 2008, vol. 196, nos. 1–2, pp. 116–130. https://doi.org/10.1080/00986440802301537

    Article  CAS  Google Scholar 

  3. Furda, L.V., Ryl'tsova, I.G., and Lebedeva, O.E., Russ. J. Appl. Chem., 2008, vol. 81, pp. 1630–1633. https://doi.org/10.1134/S1070427208090292

    Article  CAS  Google Scholar 

  4. Furda, L.V., Smal’chenko, D.E., Titov, E.N., and Lebedeva, O.E., Izv. vuzov. Khimiya Khim. Tekhnologiya, 2020, vol. 63. no. 2, pp. 85–89. https://doi.org/10.6060/ivkkt.20206306.6202

    Article  CAS  Google Scholar 

  5. Li, K., Lei, J., Yuan, G., Weerachanchai, P., Wang, J.-Y., Zhao, J., and Yang, Y., Chem. Eng. J., 2017, vol. 317, pp. 800–809. https://doi.org/10.1016/j.cej.2017.02.113

    Article  CAS  Google Scholar 

  6. Budsaereechai, S., Hunt,, A.J., and Ngernyen, Y., RSC Adv., 2019, vol. 9, pp. 5844–5857. https://doi.org/10.1039/C8RA10058F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng, Y., Wang, Y., Ke, L., Dai, L., and Wu, Q., Cobb, K., Zeng, Y., Zou, R., Liu, Y., Ruan, R., Energy Sonvers. Manag., 2022, vol. 254, ID 115243. https://doi.org/10.1016/j.enconman.2022.115243

    Article  CAS  Google Scholar 

  8. Fadillah, G., Fatimah, I., Sahroni, I., Musawwa, M.M., Mahlia, T.M.I., and Muraza, O., Catalysts, 2021, vol. 11, no. 7, ID 837. https://doi.org/10.3390/catal11070837

    Article  CAS  Google Scholar 

  9. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.

    Google Scholar 

  10. Battalova, Sh.B., Fiziko-khimicheskie osnovy polucheniya i primeneniya katalizatorov i adsorbentov iz bentonitov (Physico-Chemical Basis for the Production and Use of Catalysts and Adsorbents from Bentonites), Alma-Ata: Nauka, 1986.

    Google Scholar 

  11. Komadel, P., Appl. Clay Sci., 2016, vol. 131, pp. 84–99. https://doi.org/10.1016/j.clay.2016.05.001

    Article  CAS  Google Scholar 

  12. Elhadj, Y.M.S., Perrin, X.F., Appl. Clay Sci., 2021, vol. 213, ID 106250. https://doi.org/10.1016/j.clay.2021.106250

    Article  CAS  Google Scholar 

  13. Filipovic-Petrovic, L.M., Kostic-Gvozdenovic, L., Eric-Antonic, S.C., J. Serb. Shem. Soc., 2002, vol. 67, no. 11, pp. 753–760. https://doi.org/10.2298/JSC0211753F

    Article  CAS  Google Scholar 

  14. Hrachová, J., Komadel, P., Fajnor, V.Š., Mater. Lett., 2007, vol. 16, no. 61, pp. 3361–3365. https://doi.org/10.1016/j.matlet.2006.11.063

    Article  CAS  Google Scholar 

  15. Valera-Zaragoza, M., Agüero-Valdez, D., Lopez-Medina, M., Dehesa-Blas, S., Navarro-Mtz, A.K., Avalos-Borja, M., Juarez-Arellano, E.A., Adv. Powder Technol., 2021, vol. 32, no. 2, pp. 591–599. https://doi.org/10.1016/j.apt.2021.01.004

    Article  CAS  Google Scholar 

  16. Leite, L., Stonkus, V., Edolfa, K., Ilieva, L., Plyasova, L., Zaikovskii, V., Appl. Catal. A: General, 2006, vol. 311, pp. 86–93. https://doi.org/10.1016/j.apcata.2006.06.006

    Article  CAS  Google Scholar 

  17. Romanenko, E.P., Taraban, E.A., Tkachev, A.V., Russ. Shem. Bull., 2006, vol. 55, no. 6, pp. 993–998. https://doi.org/10.1007/s11172-006-0368-y

    Article  CAS  Google Scholar 

  18. Tanabe, K., Solid Acids and Base. Their Catalytic Properties, New York: Acad. Press, 1970.

    Google Scholar 

  19. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1989, pp. 190–213.

    Google Scholar 

  20. Gregg, S.J. and Sing, K.S.W., Adsorption Surface Area and Porosity, London: Academic Press, 1967.

    Book  Google Scholar 

  21. Khodakov, G.S., Fizika izmel’cheniya (Physics of Grinding), Moscow: Nauka, 1972.

    Google Scholar 

  22. Furda, L.V., Krivenko, L.A., and Lebedeva, O.E., Izv. Vuzov. Khimiya i khim. Tekhnologiya, 2005, vol. 48, no. 11. pp. 60–63.

    Google Scholar 

  23. Aguado, J., Sotelo, J.L., Serrano, D.P., Calles, J.A., Escola, J.M., En. Fuels, 1997, vol. 11, no. 6, pp. 1225–1231. https://doi.org/10.1021/EF970055V

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the scientific equipment of the Center for Collective Use “Technologies and Materials” of the Belgorod State National Research University.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

O. E. Lebedeva: formulation of problems, analysis and processing of the results obtained, analysis of literature data; L.V. Furda: selection of research objects, analysis of literature data, conducting experiments on thermocatalytic degradation; preparation of the section Results and Discussion; O.G. Isakulov: preparation of raw materials, production of catalysts based on clay material, carrying out studies of the acid-base properties of the surface of samples of clay material and catalysts based thereon.

Corresponding author

Correspondence to O. E. Lebedeva.

Ethics declarations

The authors declare that there are no conflicts of interest

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 622–631, June, 2023 https://www.elibrary.ru/SZHLNB

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furda, L.V., Isakulov, O.G. & Lebedeva, O.E. Synthesis of Clay-Based Catalysts for the Degradation of Polyolefins by Mechanical Activation. Russ J Appl Chem 96, 693–701 (2023). https://doi.org/10.1134/S1070427223060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223060095

Keywords:

Navigation