Skip to main content
Log in

Progress of Commercial Technologies for Producing Syngas and Hydrogen from Hydrocarbon Gases

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Commercial processes for conversion of carbon-containing gases to syngas and hydrogen are considered. The techno-economic characteristics of the main hydrocarbon gas conversion processes (steam methane reforming, partial oxidation, autothermal reforming) used by world’s leading chemical and petrochemical companies and implemented on the commercial or semicommercial scale are presented. The characteristics of these processes are analyzed. The processes of steam conversion, autothermal reforming, and partial oxidation of methane have specific predominant application fields depending on the feed composition and requirements to the composition of the syngas obtained. The steam conversion can ensure the maximal H2/CO molar ratio in the syngas obtained, and the processes of autothermal reforming and partial oxidation of methane do not require external heat supply to the reactor and are simple in implementation. Analysis of the syngas market shows that the main drivers of its progress can be the need for alternative resources and the stable demand of the chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Makaryan, I.A. and Sedov, I.V., Russ. J. Gen. Chem., 2021, vol. 91, pp. 1912–1928. https://doi.org/10.1134/S1070363221090371

    Article  Google Scholar 

  2. Preuster, P., Papp, C., and Wasserscheid, P., Acc. Chem. Res., 2017, vol. 50, no. 1, pp. 74–85. https://doi.org/10.1021/acs.accounts.6b00474

    Article  CAS  PubMed  Google Scholar 

  3. Makaryan, I.A., Sedov, I.V., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, pp. 1815–1830. https://doi.org/10.1134/S1070427220120034

    Article  CAS  Google Scholar 

  4. Makaryan, I.A., Sedov, I.V., Salgansky, E.A., Arutyunov, A.V., and Arutyunov, V.S., Energies, 2022, vol. 15, no. 6, ID 2265. https://doi.org/10.3390/en15062265

    Article  CAS  Google Scholar 

  5. Ghoneim, S.A., El-Salamony, R.A., and El-Temtamy, S.A., WJET, 2016, vol. 4, no. 1, pp. 116–139. https://doi.org/10.4236/wjet.2016.41011

    Article  Google Scholar 

  6. Kalamaras, C.M. and Efstathiou, A.M., Conf. Papers Sci., 2013, ID 690627. https://doi.org/10.1155/2013/690627

    Article  Google Scholar 

  7. Saeidi, S., Fazollah, F., Najari, S., Iranshahi, D., and Baxter, L.L., J. Ind. Eng. Chem., 2017, vol. 49, pp. 1–25. https://doi.org/10.1016/j.jiec.2016.12.003

    Article  CAS  Google Scholar 

  8. Nikolaidis, P. and Poullikkas, A., Renew. Sust. Energy Rev., 2017, vol. 67, pp. 597–611. https://doi.org/10.1016/j.rser.2016.09.044

    Article  CAS  Google Scholar 

  9. Makaryan, I.A. and Sedov, I.V., Russ. J. Gen. Chem., 2021, vol. 91, pp. 2743–2757. https://doi.org/10.1134/S1070363221120537

    Article  CAS  Google Scholar 

  10. Benson, J. and Celin, A., Chem. Eng. Prog., 2018, vol. 114, no. 1, pp. 55–60.

    Google Scholar 

  11. IEAGHG Technical Report 2017-02, February, 2017, Techno-Economic Evaluation of SMR Based Standalone (Merchant) Plant with CCS, IEA Greenhouse gas R&D programme. https://ieaghg.org/exco_docs/2017-02.pdf.

  12. Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Makaryan, I.A., Shmelev, V.M., and Aldoshin, S.M., NefteGazoKhimiya, 2014, no. 4, pp. 19–23. http://ieaghg.org/exco_docs/2017-02.pdf.

    Google Scholar 

  13. LeValley, T.L., Richard, A.R., and Fan, M., Int. J. Hydrogen Energy, 2014, vol. 39, pp. 16983–17000. https://doi.org/10.1016/j.ijhydene.2014.08.041

    Article  CAS  Google Scholar 

  14. Oni, A.O., Anaya, K., Giwa, T., Di Lullo, G., and Kumar, A., Energy Convers. Manag., 2022, vol. 254, no. 15, ID 254115245. https://doi.org/10.1016/j.enconman.2022.115245

    Article  CAS  Google Scholar 

  15. Ferreira-Aparicio, P. and Benito, M.J., Catal. Rev., 2005, vol. 47, pp. 491–588. https://doi.org/10.1080/01614940500364958

    Article  CAS  Google Scholar 

  16. Didenko, L.P., Sementsova, L.A., Chizhov, P.E., and Dorofeeva, T.V., Petrol. Chem., 2019, vol. 59, no. 4, pp. 394–404. https://doi.org/10.1134/S0965544119040054

    Article  CAS  Google Scholar 

  17. Shigarov, A.B., Kirillov, V.A., Amosov, Y.I., Brayko, A.S., Avakov, V.B., Landgraf, I.K., and Urusov, A.R., Int. J. Hydrogen Energy, 2017, vol. 42, no. 10, pp. 6713–6726. https://doi.org/10.1016/j.ijhydene.2016.12.057

    Article  CAS  Google Scholar 

  18. Yao, X., Zhang, Y., Du, L., Liu, J., and Yao, J., Renew. Sust. Energy Rev., 2015, vol. 47, pp. 519–539. https://doi.org/10.1016/j.rser.2015.03.078

    Article  CAS  Google Scholar 

  19. Makarshin, L.L. and Parmon, V.N., Ross. Khim. Zh. (Zh. Ross. Khim. O–va. im. D.I. Mendeleeva), 2006, vol. 50, no. 6, pp. 19–25. https://www.elibrary.ru/hzyysv.

    CAS  Google Scholar 

  20. Diaz, G., Leal-Quiros, E., Smith, R.A., Elliott, J., and Unruh, D., J. Phys. Conf. Ser., 2014, vol. 511, ID 012081. https://doi.org/10.1088/1742-6596/511/1/012081

    Article  CAS  Google Scholar 

  21. Snoeckx, R., Wang, W., Zhang, X., Cha, M.S., and Bogaerts, A., Sci. Rep., 2018, vol. 8, ID 15929. https://doi.org/10.1038/s41598-018-34359-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Mufachi, N.A., Rees, N.V., and Steinberger-Wilkens, R., Renew. Sust. Energy Rev., 2015, vol. 47, pp. 540–551. https://doi.org/10.1016/J.RSER.2015.03.026

    Article  CAS  Google Scholar 

  23. Ma, R., Xu, B., and Zhang, X., Catal. Today, 2019, vol. 338, pp. 18–30. https://doi.org/10.1016/j.cattod.2019.06.025

    Article  CAS  Google Scholar 

  24. Wright, H.A., Allison, J.D., Jack, D.S., Lewis, G.H., and Landis, S.R., Am. Chem. Soc., Div. Fuel Chem., 2003, vol. 48, no. 2, pp. 791–792.

    CAS  Google Scholar 

  25. Zhu, J.N., Zhang, D.K., Bromly, J.H., Barnes, F., and King, K.D., in Proc. Third Asia-Pacific Conf. on Combustion, Seoul, Korea, June 2001, pp. 481–484.

    Google Scholar 

  26. Zhu, J.N., Zhang, D.K., and King, K.D., Fuel, 2001, vol. 80, pp. 899–905. https://doi.org/10.1016/S0016-2361(00)00165-4

    Article  CAS  Google Scholar 

  27. Beretta, A., Groppi, G., Lualdi, M., Tavazzi, I., and Forzatti, P., Ind. Eng. Chem. Res., 2009, vol. 48, no. 8, pp. 3825–3836. https://doi.org/10.1021/ie8017143

    Article  CAS  Google Scholar 

  28. Hiller, H., Reimert, R., and Stonner, H.-M., Gas Production, 1. Introduction, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley–VCH, 2012, vol. 16, pp. 403–421. https://doi.org/10.1002/14356007.a12_169.pub3

    Article  CAS  Google Scholar 

  29. Speight, J.G., in Gasification for Synthetic Fuel Production. Woodhead Publishing Ser. in Energy, Luque, R. and Speight, J.G., Eds., Woodhead, 2015, pp. 221–239. https://doi.org/10.1016/B978-0-85709-802-3.00010-2

    Article  Google Scholar 

  30. Wolf, U. and Schlichting, H., Lurgi’s HP-POX Pilot Plant: A Milestone to Improved Syngas Production Gasification Technologies 2004, Washington, DC, October 3–6, 2004. https://kipdf.com/lurgi-s-hp-pox-pilot-plant-a-milestone-to-improved-syngas-production_5b185cbb7f8b9ae8658b456c.html.

  31. Breault, R.W., Energies, 2010, vol. 3, pp. 216–240. https://doi.org/10.3390/en3020216

    Article  CAS  Google Scholar 

  32. Voloshchuk, Y. and Richter, A., Chem. Eng. Sci., 2022, vol. 255, ID 17620. https://doi.org/10.1016/j.ces.2022.117620

    Article  CAS  Google Scholar 

  33. Förster, T., Voloshchuk, Y., Richter, A., and Meyer, B., Fuel, 2017, vol. 203, pp. 954–963. https://doi.org/10.1016/j.fuel.2017.03.089

    Article  CAS  Google Scholar 

  34. Richter, A., Seifert, P., Compart, F., Tischer, P., and Meyer, B., Fuel, 2015, vol. 152, pp. 110–121. https://doi.org/10.1016/j.fuel.2014.12.004

    Article  CAS  Google Scholar 

  35. Schuhmann, T., Haag, S., Schlichting, H., Do, N.T.Q., Gorny, M., Gronemann, V., Oelmann, T., and Williams, B.A., 12th Natural Gas Conversion Symp., June 2–6, 2019, Grand Hyatt, San Antonio, TX. https://aiche.confex.com/aiche/ngcs19/webprogram/Paper545691.html.

  36. Christensen, T.S. and Primdahl, I.I., Hydrocarbon Process, 1994, vol. 73, pp. 39–46.

    CAS  Google Scholar 

  37. Sharma, S. and Ghoshal, S.K., Renew. Sust. Energy Rev., 2015, vol. 43, pp. 1151–1158. https://doi.org/10.1016/J.RSER.2014.11.093

    Article  CAS  Google Scholar 

  38. Qasim, F., Jae Shin, J.S., Jeong, J.H., and Park, S.J., An Optimization Study on Syngas Production and Economic Evaluation, January 2016, MATEC Web of Conferences 69:07001. Project: Syngas production process in GTL and its optimization. https://doi.org/10.1051/matecconf/20166907001

  39. Atikah, A.A., Abdullah, Z.N., Hafiz, K.F., Abrar, I., and Azduwin, K., Renew. Sust. Energy Rev., 2016, vol. 53, pp. 1333–1347. https://doi.org/10.1016/j.rser.2015.09.030

    Article  CAS  Google Scholar 

  40. Garcia-Nunez, J.A., Pelaez-Samaniego, M.R., Garcia-Perez, M.E., Fonts, I., Abrego, J., Westerhof, R.J.M., and Garcia-Perez, M., Energy Fuels, 2017, vol. 31, no. 6, pp. 5751–5775. https://doi.org/10.1021/acs.energyfuels.7b00641

    Article  CAS  Google Scholar 

  41. Yuchen, G., Jianguo, J., Yuan, M., Feng, Y., and Aikelaimu, A., Energy Convers. Manag., 2018, vol. 171, pp. 133–155. https://doi.org/10.1016/j.enconman.2018.05.083

    Article  CAS  Google Scholar 

  42. Muhammad, A., Arif, D., and Bagja, J.F., Int. J. Hydrogen Energy, 2021, vol. 46, no. 68, pp. 33756–33781. https://doi.org/10.1016/j.ijhydene.2021.07.189

    Article  CAS  Google Scholar 

  43. Espinoza, L., Guerrero, F., Ripoll, N., Toledo, M., Guerrero, L., Carvajal, A., and Barahona, A., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 15693–15702. https://doi.org/10.1016/j.ijhydene.2018.06.136

    Article  CAS  Google Scholar 

  44. Caballero, J.J.B., Zaini, I.N., and Yang, W., Appl. Energy Combust. Sci., 2022, vol. 10, ID 100064. https://doi.org/10.1016/j.jaecs.2022.100064

    Article  Google Scholar 

  45. Salman, C.A., Schwede, S., Thorin, E., and Yan, J., E3S Web Conf., 2017, vol. 22, ID 00151. https://doi.org/10.1051/e3sconf/20172200151

    Article  CAS  Google Scholar 

  46. Minh, D.P., Siang, T.J., Vo, D.-V.N., Phan, T.S., Ridart, C., Nzihou, A., and Grouset, D., in Hydrogen Supply Chains. Design, Deployment and Operation, UK: Academic, 2018, pp. 111–166. https://doi.org/10.1016/C2016-0-00605-8

    Article  Google Scholar 

  47. Negri, F., Fedeli, M., Barbieri, M., and Manenti, F., Invention Disclosure, 2022, vol. 2, ID 100008. https://doi.org/10.1016/j.inv.2022.100008

    Article  Google Scholar 

  48. Schiaroli, N., Volanti, M., Crimaldi, A., Passarini, F., Vaccari, A., Fornasari, G., Copelli, S., Florit, F., and Lucarelli, C., Energy Fuels, 2021, vol. 35, no. 5, pp. 4224–4236. https://doi.org/10.1021/acs.energyfuels.0c04066

    Article  CAS  Google Scholar 

  49. Svensson, H., Tuna, P., Hulteberg, C., and Brandin, J., Fuel, 2013, vol. 106, pp. 271–278. https://doi.org/10.1016/j.fuel.2012.10.061

  50. Lugvishchuk, D.S., Kulchakovsky, P.I., Mitberg, E.B., and Mordkovich, V.Z., Petrol. Chem., 2018, vol. 58, pp. 427–433. https://doi.org/10.1134/S0965544118050109

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of Russian Science Foundation project no. 22-13-00324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sedov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 539–564, June, 2023 https://www.elibrary.ru/SVXTAG

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makaryan, I.A., Sedov, I.V. Progress of Commercial Technologies for Producing Syngas and Hydrogen from Hydrocarbon Gases. Russ J Appl Chem 96, 619–642 (2023). https://doi.org/10.1134/S1070427223060010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223060010

Keywords:

Navigation