Skip to main content
Log in

Gd2O3–Carbon Nanoflakes (CNFs) as Contrast Agents for Photon-Counting Computed Tomography (PCCT)

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

2–3 nm Gd2O3 nanoparticles deposited on carbon nanoflakes were prepared. These are new contrast agents for photon-counting computed tomography based on detectors allowing counting of separate photons. Contrast agents of the Gd2O3@C core–shell structure were prepared by graphitization of the surface of these particles. The Gd2O3 and Gd2O3@C nanoparticles obtained, aqueous solution of Gd(NO3)3·6H2O, and a dispersion of 300–500 nm Gd2O3 particles in gelatin were studied by photon-counting computed tomography. At equal gadolinium concentrations, the highest X-ray absorption was noted for Gd(NO3)3·6H2O and Gd2O3, which is associated with higher density of these samples. Carbon in the contrast agents does not affect the absorption. An algorithm was developed for semiquantitative determination of gadolinium by photon-counting computed tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Gomes, M.J. and Jaseemudheen, M.M., J. Health Allied Sci., 2023, vol. 13, no. 2, pp. 147–152. https://doi.org/10.1055/s-0042-1749180

    Article  Google Scholar 

  2. Kim, J., Bar-Ness, D., Si-Mohamed, S., Coulon, P., Blevis, I., Douek, P., and Cormode, D.P., Sci. Rep., 2018, vol. 8, ID 12119. https://doi.org/10.1038/s41598-018-30570-y

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Suslova, E.V., Kozlov, A.P., Shashurin, D.A., Rozhkov, V.A., Sotenskii, R.V., Maximov, S.V., Savilov, S.V., Medvedev, O.S., and Chelkov, G.A., Nanomaterials, 2022, vol. 12, ID 4110. https://doi.org/10.3390/nano12234110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suslova, E., Shashurin, D., Kozlov, A., Maximov, S., Rozhkov, V., Sotenskii, R., Savilov, S., Medvedev, O., and Chelkov, G., Funct. Mater. Lett., 2022, vol. 15, no. 7, ID 2250029. https://doi.org/10.1142/S1793604722500291

    Article  ADS  Google Scholar 

  5. Levine, D., McDonald, R.J., and Kressel, H.Y., JAMA, 2018, vol. 320, no. 18, pp. 1853–1854. https://doi.org/10.1001/jama.2018.13362

    Article  PubMed  Google Scholar 

  6. Russo, M., Ponsiglione, A.M., Forte, E., Netti, P.A., and Torino, E., Nanomedicine, 2017, vol. 12, no. 18, pp. 2199–2210. https://doi.org/10.2217/nnm-2017-0098

    Article  CAS  PubMed  Google Scholar 

  7. Morimoto, H., Minato, M., Nakagawa, T., Sato, M., Kobayashi, Y., Gonda, K., Takeda, M., Ohuchi, N., and Suzuki, N., J. Sol–Gel Sci. Technol., 2011, vol. 59, pp. 650–657. https://doi.org/10.1007/s10971-011-2540-6

    Article  CAS  Google Scholar 

  8. Fatima, A., Ahmad, M.W., Al Saidi, A.K.A., Choudhury, A., Chang, Y., and Lee, G.H., Nanomaterials, 2021, vol. 11, no. 9, ID 2449. https://doi.org/10.3390/nano11092449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bouzas-Ramos, D., Canga, K.C., Mayo, J.C., Sainz, R.M., Encinar, J.R., and Costa-Fernandez, J.M., Adv. Funct. Mater., 2019, vol. 29, ID 1903884. https://doi.org/10.1002/adfm.201903884

    Article  CAS  Google Scholar 

  10. Tian, G., Yin, W., Jin, J., Zhang, X., Xing, G., Li, S., Gu, Z., and Zhao, Y., J. Mater. Chem. B, 2014, vol. 2, pp. 1379–1389. https://doi.org/10.1039/C3TB21394C

    Article  CAS  PubMed  Google Scholar 

  11. Savilov, S.V., Strokova, N.E., Ivanov, A.S., Arkhipova, E.A., Desyatov, A.V., Hui, X., Aldoshin, S.M., and Lunin, V.V., Mater. Res. Bull., 2015, vol. 69, pp. 13–19. https://doi.org/10.1016/j.materresbull.2015.01.001

    Article  CAS  Google Scholar 

  12. Stolbov, D.N., Chernyak, S.A., Maslakov, K.I., Kuznetsova, N.N., and Savilov, S.V., Russ. Chem. Bull., 2022, vol. 71, no. 4, pp. 680–685. https://doi.org/10.1007/s11172-022-3465-7

    Article  CAS  Google Scholar 

  13. Kozlov, A., Suslova, E., Maksimov, S., Isaikina, O., Maslakov, K., Shashurin, D., Savilov, S., and Shelkov, G., Phys. Part. Nucl. Lett., 2023, vol. 20, pp. 1254–1258. https://doi.org/10.1134/S1547477123050473

    Article  CAS  Google Scholar 

  14. Park, S.E., Kim, J.G., Hegazy, M.A.A., Cho, M.H., and Lee, S.Y., Proc. Medical Imaging 2014: Physics of Medical Imaging, Whiting, B.R. and Hoeschen, C., Eds., San-Diego, CA, USA: SPIE Medical Imaging, 2014, ID 90335N. https://doi.org/10.1117/12.2043317

  15. Kochubei, D.I. and Kanazhevskii, V.V., Khim. Inter. Ustoich. Razv., 2013, vol. 21, no. 1, pp. 21–36. https://www.elibrary.ru/xqgfxn

    CAS  Google Scholar 

  16. Vatsyuk, A.V., Ingacheva, A.S., and Chukalina, M.V., Sens. Sist., 2018, vol. 32, no. 1, pp. 83–91. https://doi.org/10.7868/S0235009218010122

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to S.V. Maksimov and Cand. Sci. (Chem.) A.V. Shumyantsev for recording the TEM images and thermograms of the samples, respectively.

Funding

The study was financially supported by the Russian Science Foundation (project 22-15-00072) using the equipment purchased at the expense of the Program for the Development of the Moscow University.

Author information

Authors and Affiliations

Authors

Contributions

D.A. Shashurin: development of the scheme of experimental studies, execution of tomographic experiments, data processing; E.V. Suslova: concept and idea of the study, synthesis and analysis of the physicochemical characteristics of the samples; V.A. Rozhkov and R.V. Sotenskii: tomographic experiments, data processing; O.S. Medvedev, G.A. Shelkov: administrative and organizational support of the study.

Corresponding author

Correspondence to E. V. Suslova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 4, pp. 337–344, August, 2023 https://doi.org/10.31857/S0044461823040023

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashurin, D.A., Suslova, E.V., Rozhkov, V.A. et al. Gd2O3–Carbon Nanoflakes (CNFs) as Contrast Agents for Photon-Counting Computed Tomography (PCCT). Russ J Appl Chem 96, 410–416 (2023). https://doi.org/10.1134/S107042722304002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722304002X

Keywords:

Navigation