Skip to main content
Log in

Potential Fast and Promising Separation for Valuable Ions of Biomedical Interest

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The objective of the current work is to evaluate the selective extraction of zinc(II) from copper(II) ions from their binary system as a simulated mode for separation of 64,67Cu from irradiation Zn target using a variety of extractants diluted in kerosene from chloride medium. The different factors affecting the extraction system such as extraction time, hydrochloric acid, hydrogen ions, extractant type, extractant concentrations, chloride ions and temperature were studied in order to obtain the best conditions for the extraction process. Trioctylphosphine oxide (TOPO) is efficient and promising for selective extraction of Zn over Cu from HCl by high extraction % (91.32%) within 10 min, the extracted zinc(II) species was suggested to be HZnCl3·2TOPO while copper was almost completely not extracted. Stripping was successfully accomplished by 0.01 M NaCl solution, and 5 min was sufficient to strip the loaded Zn(II) ions completely. The extraction and striping operations took around 25 min to complete separation of Zn(II)/Cu(II) from the binary system. The negative values of ΔH and ΔS variation indicate the exothermic behavior of the extraction process. As a result, TOPO is a promising extractant with a high efficiency for extracting zinc from copper and the potential for reuse for eleven cycles nearly with the same efficiency. Therefore, the sequences involved in fast separation with high purity between Zn(II)/ Cu(II) in the binary system using TOPO as extractant can be recommended to separate 64,67Cu as a theranostic radionuclide from irradiated Zn target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Sarangi, K. and Das, R.P., Hydrometallurgy, 2004, vol. 71, pp. 335–342. https://doi.org/10.1016/S0304-386X(03)00085-9

    Article  CAS  Google Scholar 

  2. Xin, B., Jiang, W., Aslam, H., Zhang, K., Liu, C., Wang, R., and Wang, Y., Bioresour. Technol., 2012, vol. 106, p. 147. https://doi.org/10.1016/j.biortech.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  3. Beata, P., Sep. Sci. Technol., 2014, vol. 49, no. 11, pp. 1706–1712. https://doi.org/10.1080/01496395.2014.906456

    Article  CAS  Google Scholar 

  4. Hoogerstraete, T.V., Onghena, B., and Binnemans, K., Int. J. Mol. Sci., 2013, vol. 14, pp. 21353–21377.

    Article  PubMed Central  Google Scholar 

  5. Lee, L.Y., Morad, N., Ismail, N., Talebi, A., and Rafatullah, M., Int. J. Mol. Sci., 2020, vol. 21, p. 6860. https://doi.org/10.3390/ijms21186860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Regel, M., Sastre, A.M., and Szymanawski, J., Environ. Sci. Technol., 2001, vol. 35, pp. 630–635. https://doi.org/10.1021/es001470w

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, D.R. and Priya, D.N., Sep. Purif. Technol., 2005, vol. 45, pp. 163–167. https://doi.org/10.1016/j.seppur.2005.02.014

    Article  CAS  Google Scholar 

  8. Lerum, H., Sand, S., Eriksen, D., and Wibetoe, G., J. Radioanal. Nucl. Chem., 2020, vol., 324 no. 3, pp. 1–12. https://doi.org/10.1007/s10967-020-07168-8

    Article  CAS  Google Scholar 

  9. Zhu, Z., Zhang, W., and Cheng, C.Y., Hydrometallurgy, 2012, vol. 113-114, pp. 155–159. https://doi.org/10.1016/j.hydromet.2011.12.016

    Article  CAS  Google Scholar 

  10. Saha, S., Fundamentals of Nuclear Pharmacy, 3rd ed., Springer- Verlag, New York, Inc., 1992. https://doi.org/10.1007/978-1-4757-4027-1_8

  11. Blower, P.J., Jason, J.S., and Zweit, J., Nucl. Med. Biol., 1996, vol. 23, p. 957. https://doi.org/10.1016/s0969-8051(96)00130-8

    Article  CAS  PubMed  Google Scholar 

  12. Takeda, A., Tamano, H., Enomoto, S., and Oku, N., Exp. Mol. Pathol., 2003, vol. 8, pp. 216–224.

    Google Scholar 

  13. Yeye, Z., Li, J., Xu, X., Man, Z., Bin, Z., Shengming, D., and Wu, Y., Technol. Cancer Res. Treat., 2019, vol. 18, pp. 1–10. https://doi.org/10.1177/1533033819830758

    Article  CAS  Google Scholar 

  14. Merrick, M.J., Rotsch, D.A., Tiwari, A., Nolen, J., Brossard, T., Song, J., Wadas, T.J., Sunderland, J.J., and Graves, S.A., Med. Biol., 2021, vol. 66, p. 035002

    Article  CAS  Google Scholar 

  15. Smith, N.A., Bowers, D.L., and Ehst, D.A., A Review. Appl. Radiat. Isotopes, 2012, vol. 70, pp. 2377–2383.

    Article  CAS  Google Scholar 

  16. Ikotun, O.F. and Lapi, S.E., Future Med. Chem., 2011, vol. 3, pp. 599–621.

    Article  CAS  PubMed  Google Scholar 

  17. Asabella, A.N., Cascini, G.L., Altini, C., Paparella, D., Notaristefano, A., and Rubini, G., Bio. Med. Res. Intl., 2014, vol. 2014, pp. 1–9.

    Google Scholar 

  18. Vyas, C.K., Park, J.H., and Yang, S.D., J. Radiopharm. Mol. Probes., 2016, vol. 2, no. 2, pp. 84–95.

    Google Scholar 

  19. Pupillo, G., Mou, L., Martini, P., Pasquali, M., Boschi, A., Cicoria, G., Duatti, A., Haddad, F., and Esposito, J., Radiochim. Acta, 2020, vol. 108, no. 8, pp. 593–602. https://doi.org/10.1515/ract-2019-3199

    Article  CAS  Google Scholar 

  20. Mou, L., Martini, P., Pupillo, G., Cieszykowska, I., Cutler, C.S., and Mikołajczak, R., A Mini. Review. Molecules, 2022, vol. 27, p. 1501. https://doi.org/10.3390/molecules27051501

    Article  CAS  PubMed  Google Scholar 

  21. Smith, S.V., Waters, D.J., and Bartolo, N.D., Radiochim. Acta, 1996, vol. 75, pp. 65–68.

    Article  CAS  Google Scholar 

  22. Rowshanfarzad, P., Jalilian, A. R., and Sabet, M., Nucleonika, 2005, vol. 50, no. 3, pp. 97–103

    CAS  Google Scholar 

  23. Gyrarkey, F. and Sato, C.S., Exp. Mol. Pathol., 1968, vol. 8, pp. 216–224.

    Article  Google Scholar 

  24. Tamhina, B., Herak, M.J., and Jagodic, V., Croactica Chemica Acata CCACAA, 1973, vol. 45(4), pp. 593–601.

    CAS  Google Scholar 

  25. Xie, Q., Zhu, H., Wang, F., Meng, X., Ren, Q., Xia, C., and Yang, Z., Molecules, 2017, vol. 22, p. 641. https://doi.org/10.3390/molecules22040641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zimmerann, H. K., Schaub, E., Hirzel, W., Schubiger, P.A., and Schibli, R., Q J. Nicl. Med. Mol. Imaging, 2008, vol. 52, pp. 145–150

    Google Scholar 

  27. Dasgupta, K., Mausner, L.F., and Srivastava, S.C., Appl. Radial. Isot., 1991, vol. 42, no. 4, pp. 371-376.

    Article  CAS  Google Scholar 

  28. Kim, J.H., Park, H., and Chun, K.S., Appl. Radial. Isot., 2010, vol. 68, pp. 1623–1626.

    Article  CAS  Google Scholar 

  29. Pedersen, K.S., Nielsen, K.M., Fonslet, J., Jensen, M., and Zhuravlev, F., Solv. Extr. Ion Exch., 2019, vol. 37, no. 5, pp. 376–391. https://doi.org/10.1080/07366299.2019.1646982

    Article  CAS  Google Scholar 

  30. Mishra, S. and Devi, N., Hydrometallurgy, 2011, vol. 107, pp. 29–33. https://doi.org/10.1016/j.hydromet.2010.12.016.

    Article  CAS  Google Scholar 

  31. El Dessouky, S.I., El-Nadi, Y.A., Ahmed, I.M., Saad, E.A., and Daoud, J.A., Chem. Engineer. Process, 2008, vol. 47, pp. 177–183. https://doi.org/10.1016/j.cep.2007.03.002

    Article  CAS  Google Scholar 

  32. Lum, K.H., Stevens, G.W., and Kentish, S.E., Hydrometallurgy, 2014, vol. 142, pp. 108–115. https://doi.org/10.1016/j.hydromet.2013.11.016

    Article  CAS  Google Scholar 

  33. Tian, M., Mu, F., Jia, Q., Quan, X., and Liao, W., J. Chem. Eng. Data, 2011, vol. 56, p. 2225. https://doi.org/10.1021/je101245d

    Article  CAS  Google Scholar 

  34. Vinício, F.I., Júlio, C.A., Rubens, S., da Silvab, S., Cláudio, A.V., and José, L.M., Química Nova, 2018, vol. 41, pp. 770–777. https://doi.org/10.21577/0100-4042.20170249

    Article  CAS  Google Scholar 

  35. Hu, J., Chen, Q., Yang, X., Hu, F., Hu, H., and Yin, Z., Sep. Purif. Technol., 2012, vol. 87, pp. 15–21. https://doi.org/10.1016/j.seppur.2011.11.006

    Article  CAS  Google Scholar 

  36. Willy, K., Stoyan, G., Jean, F., David, B., and Ilunga, N., Sep. Purif. Technol., 2010, vol. 45, pp. 535–540. https://doi.org/10.1080/01496390903529869

    Article  CAS  Google Scholar 

  37. Laso, J., García, V., Bringas, E., Urtiaga, A.M., and Ortiz, I., I. Ind. Eng. Chem. Res., 2015, vol. 54, pp. 3218−3224. https://doi.org/10.1021/acs.iecr.5b00099

    Article  CAS  Google Scholar 

  38. Cierpiszewski, R. and Szymanowski, J., Solv. Extr. Ion Exch., 2001, vol. 19, no. 3, pp. 441–456. https://doi.org/10.1081/SEI-100103279

    Article  CAS  Google Scholar 

  39. Rogers, D.W., Concise Physical Chemistry, New York: John Wiley & Sons, 2001.

    Google Scholar 

  40. Sinha, M.K., Sahu, S.K., Meshram, P., Pandey, B.D., and Kumar, V., Int. J. Mater. Metall. Eng., 2001, vol. 1, no. 2, pp. 28–34. https://doi.org/10.5923/j.ijmee.20120102.04

    Article  Google Scholar 

  41. Obaseki, O.O., Ipinmoroti, K.O., and Ajayi, O.O., Glob. J. Pure Appl. Sci., 2006, vol. 12, no. 1, pp. 93–97. https://doi.org/10.4314/gjpas.v12i1.16573

    Article  CAS  Google Scholar 

Download references

Funding

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda E. Rizk.

Ethics declarations

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizk, H.E., Imam, D.M. & Attallah, M.F. Potential Fast and Promising Separation for Valuable Ions of Biomedical Interest. Russ J Appl Chem 96, 385–394 (2023). https://doi.org/10.1134/S1070427223030163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030163

Keywords:

Navigation