Skip to main content
Log in

Synthesis of SAPO-31 Nanorod in Ethylene Glycol–Water Medium and Its Catalytic Performance in the n-Hexadecane Hydroisomerization

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Silicoaluminophosphates (SAPOs) molecular sieves with one-dimensional channels as acid component of bifunctional catalysts loading metal have been attracted attention in the field of clean fuel production due to their mild acidity and shape-selectivity. Herein, a series of novel SAPO-31 molecular sieve nanorod aggregations (S31-xEG) were synthesized in an ethylene glycol–water (EG–H2O) crystallization medium, and the morphology and acidity, as well as the location of Si atoms on the framework were adjusted by changing the EG/H2O ratio. The S31–xEG samples exhibit morphology of aggregation composed of nanorods with mean diameter of ~30 nm and length of 3~4 μm, as well as reduced total Brønsted acid density, which is in good linear correlation with the amount of the framework Si atom with Si(1~4Al) chemical environment. The catalytic performances of 0.5Pd/S31 and 0.5Pd/S31-20EG bifunctional catalysts prepared by loading 0.5 wt % Pd on the SAPO-31 (S31) synthesized in the water as crystallization medium and S31–20EG (EG/H2O = 2 : 3) were tested in the n-hexadecane hydroisomerization, respectively, and both catalysts showed high iso-hexadecane yield (~85.0%), while 0.5Pd/S31–20EG demonstrated larger turnover frequency (TOF) value and proportion of mono-branched iso-hexadecane in the thermodynamic control region (at n-hexadecane conversion of ~90%) due to a synergistic catalysis between metal and Brønsted acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Al-Rawi, U.A., Sher, F., Hazafa, A., et al., Ind. Eng. Chem. Res., 2020, vol. 59, pp. 22092–22106. https://doi.org/10.1021/acs.iecr.0c05184

    Article  CAS  Google Scholar 

  2. Yu, R., Tan, Y., Yao, H., et al., ACS Appl. Mater. Inter., 2022, vol. 14, pp. 44377–44388. https://doi.org/10.1021/acsami.2c11607

    Article  CAS  Google Scholar 

  3. Liu, W., Zhang, X., Yu, Q., et al., J. Colloid. Interf. Sci., 2024, vol. 653, pp. 1715–1724. https://doi.org/10.1016/j.jcis.2023.09.160

    Article  CAS  Google Scholar 

  4. Zhao, X.L., Liu, W., Wang, J., et al., Appl. Catal. A-Gen., 2020, vol. 602, p. 117738. https://doi.org/10.1016/j.apcata.2020.117738

    Article  CAS  Google Scholar 

  5. Dai, X.J., Cheng, Y., Liu, T.T., et al., Chem. Eng. J., 2023, vol. 475, p. 146412. https://doi.org/10.1016/j.cej.2023.146412

    Article  CAS  Google Scholar 

  6. Chen, Y.J., Li, C., Chen, X., et al., Ind. Eng. Chem. Res., 2018, vol. 57, pp. 13721–13730. https://doi.org/10.1021/acs.iecr.8b03806

    Article  CAS  Google Scholar 

  7. Zhang, Y., Wang, W., Jiang, X., et al., Catal. Sci., 2018, vol. 8, pp. 817–828. https://doi.org/10.1039/c7cy02106b

    Article  CAS  Google Scholar 

  8. Meng, L.Q., Vanbutsele, G., Pestman, R., et al., J. Catal., 2020, vol. 389, pp. 544–555. https://doi.org/10.1016/j.jcat.2020.06.031

    Article  CAS  Google Scholar 

  9. Wang, D.X., Kang, X., Gu, Y., et al., ACS Catal., 2020, vol. 10, pp. 10449–10458. https://doi.org/10.1021/acscatal.0c01159

    Article  CAS  Google Scholar 

  10. Meng, J., Cui, T., Bai, D., et al., Fuel, 2022, vol. 324, pp. 124–129. https://doi.org/10.1016/j.fuel.2022.124589

    Article  CAS  Google Scholar 

  11. Chen, Y.J., Li, C., Chen, X., et al., Micropor. Mesopor. Mater., 2018, vol. 268, pp. 216–224. https://doi.org/10.1016/j.micromeso.2018.04.033

    Article  CAS  Google Scholar 

  12. Wang, X.Y., Zhang, X.W., Wang, Q.F., Appl. Catal. A-Gen., 2020, vol. 590, p. 117335. https://doi.org/10.1016/j.apcata.2019.117335

    Article  CAS  Google Scholar 

  13. Meriaudeau, P., Tuan, V.A., Nghiem, V.T., et al., J. Catal., 1997, vol. 169, pp. 55–66. https://doi.org/10.1006/jcat.1997.1647

    Article  CAS  Google Scholar 

  14. Wu, Q., Yuan, J.M., Guo, C.M., et al., Fuel. Process. Technol., 2023, vol. 244, p. 107692. https://doi.org/10.1016/j.fuproc.2023.107692

    Article  CAS  Google Scholar 

  15. Ding, H.X., Zhou, Q.M., Li, J.F., et al., Catal. Sci. Technol., 2021, vol. 11, pp. 5135–5146. https://doi.org/10.1039/d1cy00655j

    Article  CAS  Google Scholar 

  16. Fu, Y.Y., Guo, D.L., Jiang, W.L., et al., Fuel, 2023, vol. 335, p. 126956. https://doi.org/10.1016/j.fuel.2022.126956

    Article  CAS  Google Scholar 

  17. Guo, C.M., Wang, W., Zhang, Y., et al., Fuel. Process. Technol., 2021, vol. 214, p. 106717. https://doi.org/10.1016/j.fuproc.2020.106717

    Article  CAS  Google Scholar 

  18. Su, X.F., Liu, B.Y., Feng, C.Q., et al., Mater., 2022, vol. 344, p. 112215. https://doi.org/10.1016/j.micromeso.2022.112215

    Article  CAS  Google Scholar 

  19. Ali, D., Li, Z.H., Azim, M.M., et al., Micropor. Mesopor. Mater., 2022, vol. 329, p. 111550. https://doi.org/10.1016/j.micromeso.2021.111550

    Article  CAS  Google Scholar 

  20. Wu, Q., Jia, G.Z., Zhang, Y., et al., Fuel, 2023, vol. 352, p. 129066. https://doi.org/10.1016/j.fuel.2023.129066

    Article  CAS  Google Scholar 

  21. Wang, X.Y., Zhang, X.W., Wang, Q.F., Ind. Eng. Chem. Res., 2019, vol. 58, pp. 8495–8505. https://doi.org/10.1021/acs.iecr.8b06450

    Article  CAS  Google Scholar 

  22. Yue, T., Liu, W., Li, L.Y., et al., J. Catal., 2018, vol. 364, pp. 308–327. https://doi.org/10.1016/j.jcat.2018.06.003

    Article  CAS  Google Scholar 

  23. Yang, F., Zhou, Q.M., Wang, J., et al., Chem. Eng. J., 2023, vol. 461, p. 141887. https://doi.org/10.1016/j.cej.2023.141887

    Article  CAS  Google Scholar 

  24. Cubillas, P., Anderson, M.W., Zeolites and Catalysis: Synthesis, Reactions and Applications, Hoboken: Wiley-VCH Press, 2010.https://doi.org/10.1002/9783527630295.ch1

    Google Scholar 

  25. Oliver, S., Kuperman, A., Ozin, G.A., Angew. Chem. Int. Edit., 1998, vol. 37, pp. 46–62. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<46::AID-ANIE46>3.0.CO;2-R

    Article  CAS  Google Scholar 

  26. Majano, G., Raltchev, K., Vicente, A., et al., Nanoscale, 2015, vol. 7, pp. 5787–5793. https://doi.org/10.1039/C4NR07272C

    Article  CAS  PubMed  Google Scholar 

  27. Tiuliukova, I.A., Rudina, N.A., Lysikov, A.I., et al., Mater. Lett., 2018, vol. 228, pp. 61–64. https://doi.org/10.1016/j.matlet.2018.05.118

    Article  CAS  Google Scholar 

  28. Dai, X.J., Cheng, Y., Wei, Q., et al., Micropor. Mesopor. Mater., 2022, vol. 343, p. 112025. https://doi.org/10.1016/j.micromeso.2022.112025

    Article  CAS  Google Scholar 

  29. Zhu, Y., Hua, Z.L., Zhou, J., et al., Chem-Eur. J., 2011, vol. 17, pp. 14618–14627. https://doi.org/10.1002/chem.201101401

    Article  CAS  PubMed  Google Scholar 

  30. Lu, H., Xu, J., Gao, P., et al., Micropor. Mesopor. Mater., 2015, vol. 208, pp. 105–112. https://doi.org/10.1016/j.micromeso.2015.01.048

    Article  CAS  Google Scholar 

  31. Dai, X.J., Cheng, Y., Si, M., et al., Fuel, 2022, vol. 314, p. 123131. https://doi.org/10.1016/j.fuel.2022.123131

    Article  CAS  Google Scholar 

  32. Emeis, C.A., J. Catal., 1993, vol. 141, pp. 347–354. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

  33. Lyu, Y. C., Liu, Y. X., He, X., Xu, L., et al., Appl. Surf. Sci., 2018, vol. 453, pp. 350–357. https://doi.org/10.1016/j.apsusc.2018.05.106

    Article  CAS  Google Scholar 

  34. Jia, G.Z., Maximov, A. L., Wang, W., et al., Russ. J. Appl. Chem., 2020, vol. 93, pp. 502–511. https://doi.org/10.1134/S1070427220040047

    Article  Google Scholar 

  35. Lyu, Y.C., Yu, Z.M., Yang, Y., et al., J. Catal., 2019, vol. 374, pp. 208–216. https://doi.org/10.1016/j.jcat.2019.04.031

    Article  CAS  Google Scholar 

  36. Potter., M.E., ACS Catal., 2020, vol. 10, pp. 9758–9789. https://doi.org/10.1021/acscatal.0c02278

    Article  CAS  Google Scholar 

  37. Wang, W., Liu, C.J., Wu, W., Catal. Sci. Technol., 2019, vol. 9, pp. 4162–4187. https://doi.org/10.1039/C9CY00499H

    Article  CAS  Google Scholar 

  38. Sun, J.Z., Xiong, S.X., Lin, H.L., et al., Fuel, 2023, vol. 347, p. 128406. https://doi.org/10.1016/j.fuel.2023.128406

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by Intergovernmental International Science and Technology Innovation Cooperation Key Project (2018YFE0108800).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Ethics declarations

Co-author A.L. Maksimov claims to be the editor-in-chief of the Journal of Applied Chemistry; the remaining co-authors have no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, C., Maximov, A.L. et al. Synthesis of SAPO-31 Nanorod in Ethylene Glycol–Water Medium and Its Catalytic Performance in the n-Hexadecane Hydroisomerization. Russ J Appl Chem 96, 354–365 (2023). https://doi.org/10.1134/S1070427223030151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030151

Keywords:

Navigation