Skip to main content
Log in

Heterogeneous Phosphine-Containing Hydroformylation Catalysts Based on Modified Porous Organic Frameworks

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A series of heterogeneous phosphine-containing rhodium hydroformylation catalysts based on porous aromatic frameworks (PAFs) were prepared. The catalysts PAF30-MDEA-TPPTS-Rh (TPPTS is trisodium triphenylphosphine-3,3',3''-trisulfonate, MDEA is methyldiethanolamine fragment) and PAF-30-Im-TPPTS-Rh (Im is imidazole fragment) showed the highest stability in repeated use in 1-hexene hydroformylation. The catalyst PAF-30-MDEA-TPPTS-Rh before and after use in hydroformylation was characterized by elemental C,N,H,S analysis, inductively coupled plasma atomic absorption spectroscopy, low-temperature nitrogen adsorption–desorption, transmission electron microscopy, IR spectroscopy, and X-ray photoelectron spectroscopy. The effect of temperature, pressure, and solvent on the course of hydroformylation in the presence of PAF-30-MDEA-TPPTS-Rh was studied. The catalyst is active in hydroformylation of a series of unsaturated compounds, including functionalized substrates and olefins with internal double bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Franke, R., Selent, D., and Börner, A., Chem. Rev., 2012, vol. 112, no. 11, pp. 5675–5732. https://doi.org/10.1021/cr3001803

    Article  CAS  PubMed  Google Scholar 

  2. Gorbunov, D.N., Volkov, A.V., Kardasheva, Yu.S., Maksimov, A.L., and Karakhanov, E.A., Petrol. Chem., 2015, vol. 55, no. 8, pp. 587–603. https://doi.org/10.1134/S0965544115080046

    Article  CAS  Google Scholar 

  3. Zhuchkov, D.P., Nenasheva, M.V., Terenina, M.V., Kardasheva, Y.S., Gorbunov, D.N., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, no. 1, pp. 1–14. https://doi.org/10.1134/S0965544121010011

    Article  CAS  Google Scholar 

  4. Liu, B., Wang, Y., Huang, N., Lan, X., Xie, Z., Chen, J.G., and Wang, T., Chem., 2022, vol. 8, no. 10, pp. 2630–2658. https://doi.org/10.1016/j.chempr.2022.07.020

    Article  CAS  Google Scholar 

  5. Amsler, J., Sarma, B.B., Agostini, G., Prieto, G., Plessow, P.N., and Studt, F., J. Am. Chem. Soc., 2020, vol. 142, no. 11, pp. 5087–5096. https://doi.org/10.1021/jacs.9b12171

    Article  CAS  PubMed  Google Scholar 

  6. Hanf, S., Alvarado Rupflin, L., Gläser, R., and Schunk, S., Catalysts, 2020, vol. 10, no. 5, ID 510. https://doi.org/10.3390/catal10050510

    Article  CAS  Google Scholar 

  7. Feng, S., Jiang, M., Song, X., Qiao, P., Yan, L., Cai, Y., Li, B., Li, C., Ning, L., Liu, S., Zhang, W., Wu, G., Yang, J., Dong, W., Yang, X., Jiang, Z., and Ding, Y., Angew. Chem., 2023, vol. 135, no. 30, ID e202304282. https://doi.org/10.1002/ange.202304282

    Article  Google Scholar 

  8. Tian, Y. and Zhu, G., Chem. Rev., 2020, vol. 120, no. 16, pp. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687

    Article  CAS  PubMed  Google Scholar 

  9. Terenina, M.V., Kardasheva, Y.S., Kulikov, L.A., Sinikova, N.A., and Karakhanov, E.A., Petrol. Chem., 2022, vol. 62, no. 11, pp. 1321–1327. https://doi.org/10.1134/S0965544122040089

    Article  CAS  Google Scholar 

  10. Varshavsky, Y.S. and Cherkasova, T.G., Russ. J. Inorg. Chem., 1967, vol. 12, pp. 1709–1711.

    Google Scholar 

  11. Akopyan, A.V., Eseva, E.A., Lukashov, M.O., and Kulikov, L.A., Petrol. Chem., 2023, vol. 63, no. 3, pp. 257–267. https://doi.org/10.1134/S0965544123010103

    Article  CAS  Google Scholar 

  12. Yoneda, N., Nakagawa, Y., and Mimami, T., Catal. Today, 1997, vol. 36, no. 3, pp. 357–364. https://doi.org/10.1016/S0920-5861(96)00223-4

    Article  CAS  Google Scholar 

  13. Sharma, S.K., Parikh, P.A., and Jasra, R.V., J. Mol. Catal. A: Chemical, 2010, vol. 316, nos. 1–2, pp. 153–162. https://doi.org/10.1016/j.molcata.2009.10.014

    Article  CAS  Google Scholar 

  14. Gorbunov, D., Safronova, D., Kardasheva, Y., Maximov, A., Rosenberg, E., and Karakhanov, E., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 31, pp. 26566–26575. https://doi.org/10.1021/acsami.8b02797

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, J., Song, X., Chen, Z.-C., Du, W., and Chen, Y.-C., New J. Chem., 2022, vol. 46, no. 34, pp. 16382–16386. https://doi.org/10.1039/D2NJ03417D

    Article  CAS  Google Scholar 

  16. Nguyen, V.C., Do, V.H., Truong, D.D., Pham, T.T., Dinh, P.K., Vu, T.L., Garcia-Suarez, E.J., Riisager, A., Fehrmann, R., and Le, M.T., Res. Chem. Intermed., 2023, vol. 49, no. 6, pp. 2383–2398. https://doi.org/10.1007/s11164-023-05007-5

    Article  CAS  Google Scholar 

  17. Liu, Y., Liu, Z., Hui, Y., Wang, L., Zhang, J., Yi, X., Chen, W., Wang, C., Wang, H., Qin, Y., Song, L., Zheng, A., and Xiao, F.-S., Nat. Commun., 2023, vol. 14, no. 1, ID 2531. https://doi.org/10.1038/s41467-023-38181-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji, G., Li, C., Lin, X., Wu, X.-F., Yan, L., and Ding, Y., ACS Sustain. Chem. Eng., 2022, vol. 10, no. 47, pp. 15467–15479. https://doi.org/10.1021/acssuschemeng.2c04674

    Article  CAS  Google Scholar 

  19. Qi, L., Das, S., Zhang, Y., Nozik, D., Gates, B.C., and Bell, A.T., J. Am. Chem. Soc., 2023, vol. 145, no. 5, pp. 2911–2929. https://doi.org/10.1021/jacs.2c11075

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment purchased at the expense of the Program of the Development of Moscow University.

Funding

The study was financially supported by the Russian Science Foundation, project no. 22-79-10044,

https://rscf.ru/project/22-79-10044/

Author information

Authors and Affiliations

Authors

Contributions

Wang Hanlin: synthesis of the catalysts and catalytic hydroformylation experiments; M.V. Nenasheva: development of procedures for qualitative and quantitative analysis by gas–liquid chromatography; L.A. Kulikov: synthesis of PAF-30 support and of supports modified with functional groups; A.V. Akopyan: interpretation of the experimental data; D.N. Gorbunov: synthesis of the catalysts, interpretation of the results of their physicochemical analysis, and interpretation of the experimental results.

Corresponding author

Correspondence to D. N. Gorbunov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 316–328, August, 2023 https://doi.org/10.31857/S0044461823030106

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanlin, W., Nenasheva, M.V., Kulikov, L.A. et al. Heterogeneous Phosphine-Containing Hydroformylation Catalysts Based on Modified Porous Organic Frameworks. Russ J Appl Chem 96, 342–353 (2023). https://doi.org/10.1134/S1070427223030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030102

Keywords:

Navigation