Skip to main content
Log in

Influence of the Moisture Content of Mesoporous Silica Gel on the Efficiency of the Chromatographic Recovery of Vanadyl Petroporphyrins with Benzene

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Benzene proved to be a more effective eluent compared to chlorinated organic solvents traditionally used for chromatographic recovery of vanadyl petroporphyrins from the dimethylformamide (DMF) extract of asphaltenes on a column packed with mesoporous silica gel. Low eluting power of benzene can be compensated by moistening of the silica gel adsorbent. An increase in the silica gel moisture content from 0 to 7.7% does not lead to a decrease in the efficiency of the separation of vanadyl porphyrins from nonporphyrin components but leads to a tenfold decrease in the eluent consumption. A decrease in the eluent flow rate from 0.8 to 0.12 mL min–1 (per gram of the adsorbent) leads to a 1.5-fold increase in the yield of vanadyl porphyrins of required purity. An increase in the adsorbate : adsorbent weight ratio from 1 : 833 to 1 : 83 does not lead to a decrease in the efficiency of the vanadyl porphyrin recovery. Elution with benzene under optimum conditions (adsorbent moisture content, eluent flow rate, adsorbate : adsorbent ratio) allows the recovery of 3 times larger amount of petroleum vanadyl porphyrins from the DMF extract of asphaltenes than when using chloroform and dried silica gel under equal other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. McKenna, A.M., Chacón-Patiño, M.L., Vallverdu, G.S., Bouyssiere, B., Giusti, P., Afonso, C., Shi, Q., and Combariza, M.Y., Energy Fuels, 2021, vol. 35, pp. 18056–18077. https://doi.org/10.1021/acs.energyfuels.1c02002

    Article  CAS  Google Scholar 

  2. Zhao, X., Xu, C., and Shi, Q., Structure and Modeling of Complex Petroleum Mixtures, vol. 168 of Structure and Bonding, Xu, C. and Shi, Q., Eds., Cham, Switzerland: Springer, 2016, pp. 39–70. https://doi.org/10.1007/430_2015_189

    Article  CAS  Google Scholar 

  3. Woltering, M., Tulipani, S., Boreham, C.J., Walshe, J., Schwark, L., and Grice, K., Chem. Geol., 2016, vol. 441, pp. 81–91. https://doi.org/10.1016/j.chemgeo.2016.08.005

    Article  CAS  Google Scholar 

  4. Zheng, F., Hsu, C.S., Zhang, Y., Sun, Y., Wu, Y., Lu, H., Sun, X., and Shi, Q., Energy Fuels, 2018, vol. 32, no. 10, pp. 10382–10390. https://doi.org/10.1021/acs.energyfuels.8b01728

    Article  CAS  Google Scholar 

  5. Rytting, B.M., Singh, I.D., Kilpatrick, P.K., Harper, M.R., Mennito, A.S., and Zhang, Y., Energy Fuels, 2018, vol. 32, pp. 5711–5724. https://doi.org/10.1021/acs.energyfuels.7b03358

    Article  CAS  Google Scholar 

  6. Mironov, N.A., Abilova, G.R., Borisova, Y.Y., Tazeeva, E.G., Milordov, D.V., Yakubova, S.G., and Yakubov, M.R., Energy Fuels, 2018, vol. 32, pp. 12435–12446. https://doi.org/10.1021/acs.energyfuels.8b03411

    Article  CAS  Google Scholar 

  7. Mironov, N., Milordov, D., Abilova, G., Tazeeva, E., Yakubova, S., and Yakubov, M., J. Porphyrins Phthalocyanines, 2020, vol. 24, pp. 528–537. https://doi.org/10.1142/S1088424619501979

    Article  CAS  Google Scholar 

  8. Mironov, N.A., Tazeeva, E.G., Milordov, D.V., Abilova, G.R., Yakubova, S.G., and Yakubov, M.R., Russ. J. Appl. Chem., 2021, vol. 94, pp. 1324–1333. https://doi.org/10.1134/S1070427221090159

    Article  CAS  Google Scholar 

  9. Bogomolov, A.I., Temyanko, M.B., and Khotyntseva, L.I., Sovremennye metody issledovaniya neftei (Spravochno-metodicheskoe posobie) (Modern Methods for Studying Crude Oils (Handbook)), Leningrad: Nedra, 1984.

    Google Scholar 

  10. Chen, Q., Gray, M.R., and Liu, Q., Energy Fuels, 2017, vol. 31, no. 9, pp. 9328–9336. https://doi.org/10.1021/acs.energyfuels.7b01844

    Article  CAS  Google Scholar 

  11. Cortés, F.B., Montoya, T., Acevedo, S., Nassar, N.N., and Franco, C.A., CT&F—Ciencia, Tecnol. Futuro, 2016, vol. 6, no. 4, pp. 89–106. https://doi.org/10.29047/01225383.06

    Article  Google Scholar 

  12. Pradilla, D., Subramanian, S., Simon, S., Sjöblom, J., Beurroies, I., and Denoyel, R., Langmuir, 2016, vol. 32, no. 29, pp. 7294–7305. https://doi.org/10.1021/acs.langmuir.6b00816

    Article  CAS  PubMed  Google Scholar 

  13. Hu, X., Yutkin, M.P., Hassan, S., Wu, J., Prausnitz, J.M., and Radke, C.J., Langmuir, 2019, vol. 35, no. 2, pp. 428–434. https://doi.org/10.1021/acs.langmuir.8b03835

    Article  CAS  PubMed  Google Scholar 

  14. Cantú, R., Stencel, J.R., Czernuszewicz, R.S., Jaffé, P.R., and Lash, T.D., Environ. Sci. Technol., 2000, vol. 34, no. 1, pp. 192–198. https://doi.org/10.1021/es990213s

    Article  CAS  Google Scholar 

  15. Foster, N.S., Day, J.W., Filby, R.H., Alford, A., and Rogers, D., Org. Geochem., 2002, vol. 33, no. 8, pp. 907–919. https://doi.org/10.1016/S0146-6380(02)00065-7

    Article  CAS  Google Scholar 

  16. Mironov, N., Milordov, D., Tazeeva, E., Tazeev, D., Abilova, G., Yakubova, S., and Yakubov, M., Energy Fuels, 2021, vol. 35, pp. 14527–14541. https://doi.org/10.1021/acs.energyfuels.1c01495

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center for Shared Use Spectroscopic and Analytical Center, Kazan Scientific Center, Russian Academy of Sciences for the technical support of the study.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mironov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 305–315, August, 2023 https://doi.org/10.31857/S004446182303009X

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, N.A., Tazeeva, E.G., Milordov, D.V. et al. Influence of the Moisture Content of Mesoporous Silica Gel on the Efficiency of the Chromatographic Recovery of Vanadyl Petroporphyrins with Benzene. Russ J Appl Chem 96, 332–341 (2023). https://doi.org/10.1134/S1070427223030096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030096

Keywords:

Navigation