Skip to main content
Log in

Impact of Precursor Granulometry on the Synthesis of Calcium-Aluminate Phases

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Calcium aluminate phases were synthesized in the range 950–1450°C from available raw materials: carbonate rock and metallurgical alumina, predominantly in the γ form with different grain sizes. The calculations of the amount of raw materials were based on the requirement to ensure the chemical composition of the product: Al2O3 71–72 and CaO 27–28 wt %. The designed phase composition of the samples is 65 wt % CaAl2O4 and 35 wt % CaAl4O7. When alumina with a grain size of 90 μm and a spherulitic microstructure is introduced into the reaction, the formation of the CaAl2O4 and CaAl4O7 phases mainly occurs in the range of 1250–1350°C, and phase equilibrium is established at 1450°C. Reducing the size of γ-alumina grains to 10 μm and destroying their spherulitic microstructure shifts the formation of calcium aluminates to the temperature range below 1250°C, and also significantly increases the rate of synthesis of target products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. Vypusk pervyi. Dvoinye sistemy (State Diagrams of Silicate Systems. Directory. First issue. Dual systems), Toropov, N.A., Ed., Leningrad: Nauka, 1969.

    Google Scholar 

  2. Rankin, G.A. and Wright, E.F., Am. J. Sci., 1915, vol. s4-39, no. 229, pp. 1–79.

    Article  Google Scholar 

  3. Nurse, R.W., Welch J., H., and Majumdar, A.J., Trans. Brit. Ceram. Soc., 1965, no. 64, pp. 409–418.

    Google Scholar 

  4. Jerebtsov, D.A. and Mikhailov, G.G., Ceram. Int., 2001, vol. 27, no. 1, pp. 25–28. https://doi.org/10.1016/S0272-8842(00)00037-7

    Article  CAS  Google Scholar 

  5. Calcium Aluminate Cements: Proceedings of a Symposium Dedicated to H.G.Midgley, Mangabhai, R.J., Ed., New York: Taylor & Francis, 1990. https://doi.org/10.1201/9781482288872

  6. Rojas-Hernandez, R.E., Rubio-Marcos, F., Fernandez, J.F., Hussainova, I., Materials, 2021, vol. 14, no. 16, ID 4591. https://doi.org/10.3390/ma14164591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santos, T., Machado, V.V.S., Borges, O.H., Salvini, V.R., Parr, C., and Pandolfelli, V.C., Ceram. Int., 2021, vol. 47, no. 6, pp. 8398–8407. https://doi.org/10.1016/j.ceramint.2020.11.204

    Article  CAS  Google Scholar 

  8. Parreira, R.M., Andrade, T.L., Luz, A.P., Pandolfelli, V.C., and Oliveira, I.R., Ceram. Int., 2016, vol. 42, pp. 11732–11738. https://doi.org/10.1016/j.ceramint.2016.04.092

    Article  CAS  Google Scholar 

  9. Mohamed, B.M. and Sharp, J.H., J. Mater. Chem., 1997, vol. 7, pp. 1595–1599. https://doi.org/10.1039/A700201G

    Article  CAS  Google Scholar 

  10. Rivas Mercury, J.M., De Aza, A.H., and Pena, P., J. Eur. Ceram. Soc., 2005, vol. 25, pp. 3269–3279. https://doi.org/10.1016/j.jeurceramsoc.2004.06.021

    Article  CAS  Google Scholar 

  11. Gaki, A., Perrakb, Th., and Kakali, G., J. Eur. Ceram. Soc., 2007, vol. 27, no. 2–3, pp. 1785–1789. https://doi.org/10.1016/j.jeurceramsoc.2006.05.006

    Article  CAS  Google Scholar 

  12. Rodriguez, M.A., Aguilar, C.L., and Aghayan, M.A., Ceram. Int., 2012, vol. 38, no. 1, pp. 395–399. https://doi.org/10.1016/j.ceramint.2011.07.020

    Article  CAS  Google Scholar 

  13. Kurajica, S., Mandic, V., and Sipusic, J., J. Ceram. Sci. Technol., 2011, vol. 2, no. 1, pp. 15–22. https://doi.org/10.4416/JCST2010-00017

    Article  Google Scholar 

  14. Kuznetsova, T.V. and Talaber, I., Glinozemistyi tsement (Aluminous Cement), Moscow: Stroiizdat, 1988.

    Google Scholar 

  15. Singh, V.K., Ali, M.M., and Mandal, U.K., J. Am. Ceram. Soc., 1990, vol. 73, pp. 872–876. https://doi.org/10.1111/j.1151-2916.1990.tb05128.x

    Article  CAS  Google Scholar 

  16. Iftekhar, Sh., Grins, J., Svensson, G., Lööf, J., Jarmar, T., Botton, G.A., Andrei, C.M., and Engqvist, H., J. Eur. Ceram. Soc., 2008, vol. 28, no. 4, pp. 747–756. https://doi.org/10.1016/j.jeurceramsoc.2007.08.012

    Article  CAS  Google Scholar 

  17. Trubitsyn, M.A., Yapryntsev, M.N., Furda, L.V., Volovicheva, N.A., Kuzin, V.I., and Zubashchenko, R.V., Vestn. BGTU im., V.G.Shukhova, 2022, no. 2. S. 84–93. https://doi.org/10.34031/2071-7318-2021-7-2-84-93

  18. Trubitsyn, M.A., Furda, L.V., Yapryntsev, M.N., and Volovicheva, N.A., Russ. J. Inorg. Chem., 2022, vol. 67, no. 8, pp. 1308–1318. https://doi.org/10.1134/S0036023622080277

    Article  CAS  Google Scholar 

  19. Tian, Y., Pan, X., Yu, H., and Tu, G., J. Alloys Compd., 2016, no. 670, pp. 96–104. https://doi.org/10.1016/j.jallcom.2016.02.059

    Article  CAS  Google Scholar 

  20. Patent RU 2794017 (Publ. 2022). Sposob polucheniya vysokoglinozemistogo tsementa dlya nizkotsementnykh ogneupornykh lit’evykh mass (Method for Producing High-Alumina Cement for Low-Cement Refractory Casting Masses).

Download references

ACKNOWLEDGMENTS

The research was carried out using the scientific equipment of the Center for Collective Use “Technologies and Materials” of the National Research University “BelSU”.

Funding

The work was carried out at the Belgorod State National Research University (NRU “BelSU”) with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of agreement dated December 14, 2020, no. 075-11-2020-038 on the implementation of a comprehensive project “Creation of import-substituting production of components matrix systems and thermal engineering composite materials of a new generation based thereon” in accordance with the Decree of the Government of the Russian Federation of 04/09/2010 no. 218.

Author information

Authors and Affiliations

Authors

Contributions

M.A. Trubitsyn: selection of research objects, formulation of problems, analysis and processing of the results obtained, analysis of literature data; L.V. Furda: participation in setting problems, analysis of literature data; M.N. Yapryntsev: heat treatment of samples in a high-temperature furnace and studies using X-ray diffraction analysis, participation in the preparation of the section “Results and Discussion,” N.A. Volovicheva: carrying out studies of particle size distribution, analysis of the morphology of the surface of materials; M.O. Mikhailyukova: preparation of raw mixtures, analysis of the results of thermal analysis.

Corresponding author

Correspondence to M. A. Trubitsyn.

Ethics declarations

The authors declare that there are no conflicts of interest to disclose in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 269–281, August, 2023 https://doi.org/10.31857/S0044461823030052

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubitsyn, M.A., Furda, L.V., Yapryntsev, M.N. et al. Impact of Precursor Granulometry on the Synthesis of Calcium-Aluminate Phases. Russ J Appl Chem 96, 297–309 (2023). https://doi.org/10.1134/S1070427223030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030059

Keywords:

Navigation