Skip to main content
Log in

Physical-mechanical Properties and Morphology of Lignocellulose Powder Modifiers for Vulcanized Rubbers

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Powder lignocellulose modifiers for vulcanized rubbers were prepared from secondary paper resources (recycled cardboard) treated with TiCl4 in hexane. The diffraction patterns, IR spectra, and morphological characteristics of the materials obtained, including the geometric characteristics and length distribution of fibers, were analyzed. The content of titanium, lignin, and carbonyl and carboxyl groups and the bulk density of the material were determined. The presence of up to 5 wt parts of powder modifiers per 100 wt parts of rubber in the rubber stock favors preservation of physicomechanical properties of vulcanized rubbers both before and after accelerated thermal oxidative aging at 100°C for 72 h, enhancing the resin–metal cord adhesion and thus prolonging the operation life of the vulcanized rubbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Mullina, E.R., Mishurina, O.A., Nigmatullina, L.I., and Ishkuvatova, A.R., Mezhdunar. Zh. Prikl. Fundam. Issled., 2015, no. 4, pp. 32–34. https://www.elibrary.ru/tnzkbb.

  2. Slautin, D.V., Teploukhova, M.V., and Adrakovskii, R.E., Vestn. Permsk. Nats. Issled. Politekh. Univ., Khim. Tekhnol. Biotekhnol., 2018, no. 1, pp. 113–135. https://doi.org/10.15593/2224-9400/2018.1.10

  3. Kozhevnikov, S.Yu., Koverninskii, I.N., and Kanarskii, A.V., Vestn. Tekhnol. Univ., 2016, vol. 19, no. 5, pp. 81–85. https://www.elibrary.ru/vnyvel

    Google Scholar 

  4. Deshwal, G.K., Panjagari, N.R., and Alam, T., J. Food Sci. Technol., 2019, vol. 56, pp. 4391–4403. https://doi.org/10.1007/s13197-019-03950-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lozada, E.R., Gutiérrez Aguilar, C.M., Jaramillo Carvalho, J.A., Sánchez, J.C., and Barrera Torres, G., Polymers, 2023, vol. 15, no. 13, pp. 1–20. https://doi.org/10.3390/polym15132914

    Article  CAS  Google Scholar 

  6. Aaliya, B., Sunooj, K.V., and Lackner, M., Int. J. Biobased Plastics, 2021, vol. 3, no. 1, pp. 40–84. https://doi.org/10.1080/24759651.2021.1881214

    Article  CAS  Google Scholar 

  7. Gorbachev, A.V., Faizullin, I.Z., Vol’fson, S.I., Kanarskii, A.V., Zakharov, I.V., and Kazakov, Yu.M., Plast. Massy, 2023, no. 1 (1–2), pp. 48–52. https://doi.org/10.35164/0554-2901-2023-1-2-48-52

    Article  CAS  Google Scholar 

  8. Zhou, Y., Fan, M., Chen, L., and Zhuang, J., Composites, Part B: Engineering, 2015, vol. 76, pp. 180–191. https://doi.org/10.1016/j.compositesb.2015.02.028

    Article  CAS  Google Scholar 

  9. Zakharov, V.P., Shurshina, A.S., and Kulish, E.I., Kondens. Sredy Mezhfazn. Gran., 2020, vol. 22, no. 1, pp. 11–17. https://doi.org/10.17308/kcmf.2020.22/2471

    Article  CAS  Google Scholar 

  10. Vladkova, T.G., Dineff, P.D., Gospodinova, D.N., and Avramova, I., J. Appl. Polym. Sci., 2006, vol. 101, pp. 651–658. https://doi.org/10.1002/app.23730

    Article  CAS  Google Scholar 

  11. Zhou, Y., Fan, M., and Chen, L., Composites, Part B: Engineering, 2016, vol. 101, pp. 31–45. https://doi.org/10.1016/j.compositesb.2016.06.055

    Article  CAS  Google Scholar 

  12. Li, M., Pu, Y., Thomas, V.M., Yoo, C.G., Ozcan, S., Deng, Y., Nelson, K., and Ragauskas, A.J., Composites, Part B: Engineering, 2020, vol. 200, pp. 1–20. https://doi.org/10.1016/j.compositesb.2020.108254

    Article  CAS  Google Scholar 

  13. Roy, K., Debnath, S.C., and Potiyaraj, P., J. Elastomers Plast., 2019, vol. 52, no. 2, pp. 167–193. https://doi.org/10.1177/0095244319835869

    Article  CAS  Google Scholar 

  14. Roy, K., Debnath, S.C., Pongwisuthiruchte, A., and Potiyaraj, P., Rubber Chem. Technol., 2019, vol. 92, no. 2, pp. 378–387. https://doi.org/10.5254/rct.19.81533

    Article  CAS  Google Scholar 

  15. Roy, K. and Potiyaraj, P., Cellulose, 2017, vol. 25, no. 2, pp. 1077–1087. https://doi.org/10.1007/s10570-017-1613-2

    Article  CAS  Google Scholar 

  16. Bokobza, L., Nanomaterials, 2019, vol. 9, no. 1, pp. 12–32. https://doi.org/10.3390/nano9010012

    Article  CAS  Google Scholar 

  17. Fei, Y., Fang, W., Zhong, M., Jin, J., Fan, P., Yang, J., Fei, Z., Chen, F., and Kuang, T., Polymers, 2018, vol. 10, no. 3, pp. 276–287. https://doi.org/10.3390/polym10030276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ranta-Korpi, M., Konttinen, J., Saarimaa, A., Rodriguez, M., and Vainikka, P., Ash-Forming Elements in Plastics and Rubbers, Kuopio: VTT Technology, 2014, pp. 23–26. https://publications.vtt.fi/pdf/technology/2014/T186.pdf.

    Google Scholar 

  19. Nabil, H., Rathnayake, W.G.I.U., and Ismail, H., J. Vinyl Addit. Technol., 2017, vol. 23, no. 3, pp. 200–209. https://doi.org/10.1002/vnl.21497

    Article  CAS  Google Scholar 

  20. Kumaua, V., Kumar, A., Chhatra, R.K., and Lee, D.J., Nanofabrication, 2022, vol. 7, pp. 104–115. https://doi.org/10.37819/nanofab.000.200

    Article  Google Scholar 

  21. Roy, K.J., Sikdar, D., Mandal, S.K., and Debnach, S.C., Rubber Chem. Technol., 2020, vol. 93, no. 2, pp. 346–359. https://doi.org/10.5254/rct.19.84831

    Article  CAS  Google Scholar 

  22. Cazan, C., Enesca, A., and Andronic, L., Polymers, 2021, vol. 13, no. 12, pp. 1–24. https://doi.org/10.3390/polym13122017

    Article  CAS  Google Scholar 

  23. Patent RU 2680046, Publ. 2019.

  24. Frolova, S.V., Kuvshinova, L.A., Ryzanov, M.A., and Kuchin, A.V., Chem. Sustain. Develop., 2012, vol. 20, no. 2, pp. 205–209. https://www.elibrary.ru/ynkcvd.

    Google Scholar 

  25. Osnovy analiticheskoi khimii. Prakticheskoe rukovodstvo (Principles of Analytical Chemistry. Practical Guide), Zolotov, Yu.A., Ed., Moscow: Vysshaya Shkola, 2001.

    Google Scholar 

  26. Kuznetsova, Z.I., Metody issledovaniya tsellyulozy (Methods for Studying Cellulose), Karlivan, V.P., Ed., Riga: Zinatne, 1981, pp. 214–219.

    Google Scholar 

  27. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Works on Wood and Pulp Chemistry), Moscow: Ekologiya, 1991.

    Google Scholar 

  28. Segal, L., Creely, J.J., Martin, A.E., Jr., and Conrad, C.M., Textile Res., 1959, vol. 29, pp. 786–794 [28]. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  29. Melekh, N.V., Aleshina, L.A., and Frolova, S.V., Polym. Sci., Ser. A, 2014, vol. 56, no. 2, pp. 129–136. https://doi.org/10.1134/S0965545X14020102

    Article  CAS  Google Scholar 

  30. Kuvshinova, L.A. and Manakhova, T.N., Khim. Rast. Syr’ya, 2014, no. 2, pp. 29–34. https://doi.org/10.14258/jcprm.1402029

    Article  CAS  Google Scholar 

  31. Karlsson, H., Fiber Guide. Fiber analysis and process applications in the pulp and paper industry. Part 9: Measurements of fiber properties, Sweden: AB Lorentzen & Werrte, 2006.

    Google Scholar 

  32. Penkin, A.A. and Kazakov, Ya.V., Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., 2023, no. 4, pp. 169–179. https://doi.org/10.37482/0536-1036-2023-4-169-179

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the Chemistry Center for Shared Use, Institute of Chemistry, Kola Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia and of the Kazan National Research University of Technology, Kazan, Tatarstan, Russia.

The authors are grateful to the Lomonosov Northern (Arctic) Federal University for the analysis of the samples with an L&W automatic fiber tester.

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (government assignment no. 122040600027-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Kuvshinova or Yu. S. Karaseva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 252–263, August, 2023 https://doi.org/10.31857/S0044461823030039

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuvshinova, L.A., Udoratina, E.V., Karaseva, Y.S. et al. Physical-mechanical Properties and Morphology of Lignocellulose Powder Modifiers for Vulcanized Rubbers. Russ J Appl Chem 96, 281–291 (2023). https://doi.org/10.1134/S1070427223030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030035

Keywords:

Navigation