Skip to main content
Log in

Low-Temperature Composite CO2 Sorbents Based on Amine-Containing Compounds

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The use of technologies based on combustion of carbon-containing fossil fuel leads to emission of large amounts of CO2, one of the main greenhouse gases, into the atmosphere. To reduce the CO2 level in the atmosphere, systems for CO2 sorption from various gas sources are being developed. The systems allowing the CO2 sorption and desorption at low temperatures (25–200°С) are of most interest. Most frequently, such systems are composite materials consisting of a porous support and a CO2 chemisorbent dispersed on it. Low-volatile amine-containing compounds are the most promising among organic chemisorbents. Classification of the amine-containing sorbents with respect to the preparation procedure is discussed. The procedures include impregnation, covalent grafting, and in situ polymerization on the support surface. The impregnation procedure is simple and cheap in implementation. The sorption characteristics of materials prepared by impregnation depend on the efficiency of the dispersion of the active component, which is determined by the characteristics of the support pore structure, in particular, by the ability of the pore surface for chemical or electrostatic interaction with the supported amine-containing compound. The covalent grafting is based on immobilization of alkoxyaminosilanes on the surface of porous silica materials. The supports for implementing this approach should contain a large amount of silanol groups on the surface and should have the pore size sufficient for the efficient transport of CO2 molecules to amino groups. The main drawback of the grafting method is low thickness of the amine-containing component layers obtained. In situ polymerization is used for preparing materials with high content of grafted functional groups. Provided that the blocking of support pores is excluded in the course of in situ polymerization, materials of this type exhibit the highest sorption capacity for CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., Schaaf, E., Pagani, F., Monforti-Ferrario, F., Olivier, J.G.J., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Grassi, G., Rossi, S., Oom, D., Branco, A., San-Miguel, J., and Vignati, E., Fossil CO2 Emissions of All World Countries—2022 Report, EUR 31182 EN, Luxembourg: European Union, 2022. https://doi.org/10.2760/07904

    Book  Google Scholar 

  2. Madejski, P., Chmiel, K., Subramanian, N., and Kuś, T., Energies, 2022, vol. 15, no. 3, ID 887. https://doi.org/10.3390/en15030887

    Article  CAS  Google Scholar 

  3. Decree of the Russian Federation President no. 66 of November 4, 2020: On Reduction of Greenhouse Gas Emissions; Order of the Russian Federation Government no. 3052-r of October 29, 2021 on approval of the Strategy of the Social and Economic Development of the Russian Federation with Low Level of Greenhouse Gas Emissions for the Period of up to 2050.

  4. Okovitaya, K.O. and Surzhko, O.A., Inzh. Vestn. Dona, 2017, no. 4. http://www.ivdon.ru/ru/magazine/archive/n4y2017/4618.

  5. Yaumi, A.L., Bakar, M.A., and Hameed, B.H., Energy, 2017, vol. 124, pp. 461–480. https://doi.org/10.1016/j.energy.2017.02.053

    Article  CAS  Google Scholar 

  6. Leuenberger, M., Nyfeler, P., Moret, H.P., Sturm, P., Indermühle, A., and Schwander, J., Rapid Commun. Mass. Spectrom., 2000, vol. 14, no. 16, pp. 1552–1557. https://doi.org/10.1002/1097-0231(20000830)14:16%3C1552::AID-RCM63%3E3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  7. Werner, A., Behar, F., de Hemptinne, J.C., and Behar, E., Fluid Phase Equilib., 1998, vol. 147, nos. 1–2, pp. 343–356. https://doi.org/10.1016/S0378-3812(98)00245-3

    Article  CAS  Google Scholar 

  8. Raventos, M., Duarte, S., and Alarcon, R., Food Sci. Technol. Int., 2002, vol. 8, no. 5, pp. 269–284. https://doi.org/10.1106/108201302029451

    Article  CAS  Google Scholar 

  9. Mazzotti, M., Abanades, J.C., Allam, R., Lackner, K.S., Meunier, F., Rubin, E., Sanchez, J.C., Yogo, K., and Zevenhoven, R., in IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge Univ. Press, 2005, pp. 321–337.

    Google Scholar 

  10. Minigulov, F.G., Presnyakov, V.V., Shigabutdinov, A.K., Safin, D.Kh., Presnyakov, A.V., Valitov, A.R., and Safin, A.F., Plast. Massy, 2020, vols. 5–6, pp. 45–47. https://doi.org/10.35164/0554-2901-2020-5-6-45-47

    Article  CAS  Google Scholar 

  11. Girotto, S., Minetto, S., and Neksa, P., Int. J. Refrig., 2004, vol. 27, no. 7, pp. 717–723. https://doi.org/10.1016/j.ijrefrig.2004.07.004

    Article  CAS  Google Scholar 

  12. Osborne, C.P. and Beerling, D.J., Palaeogeogr., Palaeoclimatol., Palaeoecol., 2002, vol. 182, nos. 1–2, pp. 15–29. https://doi.org/10.1016/S0031-0182(01)00450-3

    Article  Google Scholar 

  13. Woodward, F.I., Curr. Opin. Plant Biol., 2002, vol. 5, no. 3, pp. 207–211. https://doi.org/10.1016/S1369-5266(02)00253-4

    Article  CAS  PubMed  Google Scholar 

  14. Centi, G., Quadrelli, E.A., and Perathoner, S., Energy Environ. Sci., 2013, vol. 6, pp. 1711–1731. https://doi.org/10.1039/C3EE00056G

    Article  CAS  Google Scholar 

  15. Saeidi, S., Najari, S., Fazlollahi, F., Nikoo, M.K., Sefidkon, F., Klemes, J.J., and Baxter, L.L., Renew. Sust. Energy Rev., 2017, vol. 80, pp. 1292–1311. https://doi.org/10.1016/j.rser.2017.05.204

    Article  CAS  Google Scholar 

  16. Koytsoumpa, E.I., Bergins, C., and Kakaras, E., J. Supercrit. Fluids, 2018, vol. 132, pp. 3−16. https://doi.org/10.1016/j.supflu.2017.07.029

    Article  CAS  Google Scholar 

  17. Tursunov, O., Kustov, L., and Kustov, A., Oil Gas Sci. Technol.—Rev. d’IFP Energies Nouv., 2017, vol. 72, ID 30. https://doi.org/10.2516/ogst/2017027

    Article  CAS  Google Scholar 

  18. Kuzmin, A.V. and Shainyan, B.A., Russ. Chem. Rev., 2023, vol. 92, no. 6, ID 5085. https://doi.org/10.59761/RCR5085

    Article  Google Scholar 

  19. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D., and Zhong, Z., Energy Environ. Sci., 2014, vol. 7, no. 11, pp. 3478–3518. https://doi.org/10.1039/C4EE01647E

    Article  CAS  Google Scholar 

  20. Sanz-Perez, E.S., Murdock, C.R., Didas, S.A., and Jones, C.W., Chem. Rev., 2016, vol. 116, no. 19, pp. 11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173

    Article  CAS  PubMed  Google Scholar 

  21. Shi, X., Xiao, H., Azarabadi, H., Song, J., Wu, X., Chen, X., and Lackner, K.S., Angew. Chem. Int. Ed., 2020, vol. 59, no. 18, pp. 6984–7006. https://doi.org/10.1002/anie.201906756

    Article  CAS  Google Scholar 

  22. Park, Y., Lin, K.Y.A., Park, A.H.A., and Petit, C., Front. Energy Res., 2015, vol. 3, ID 42. https://doi.org/10.3389/fenrg.2015.00042

    Article  Google Scholar 

  23. Meng, F., Meng, Y., Ju, T., Han, S., Lin, L., and Jiang, J., Renew. Sust. Energy Rev., 2022, vol. 168, ID 112902. https://doi.org/10.1016/j.rser.2022.112902

    Article  CAS  Google Scholar 

  24. Chernikova, E.A., Glukhov, L.M., Kustov, L.M., Krasovskii, V.G., and Beletskaya, I.P., Russ. J. Org. Chem., 2014, vol. 50, pp. 1556–1557. https://doi.org/10.1134/S1070428014110025

    Article  CAS  Google Scholar 

  25. Chernikova, E.A., Glukhov, L.M., Kustov, L.M., and Krasovsky, V.G., Russ. Chem. Bull., 2015, vol. 64, pp. 2958–2962. https://doi.org/10.1007/s11172-015-1254-2

    Article  CAS  Google Scholar 

  26. Lee, S.C. and Kim, J.C., Catal. Surv. Asia, 2007, vol. 11, pp. 171–185. https://doi.org/10.1007/s10563-007-9035-z

    Article  CAS  Google Scholar 

  27. Zhao, C. Chen, X., Anthony, E.J., Jiang, X., Duan, L., Wu, Y., Dong, W., and Zhao, C., Prog. Energy Combust. Sci., 2013, vol. 39, no. 6, pp. 515–534. https://doi.org/10.1016/j.pecs.2013.05.001

    Article  Google Scholar 

  28. Gao, W., Zhou, T., Gao, Y., Louis, B., O’Hare, D., and Wang, Q., J. Energy Chem., 2017, vol. 26, no. 5, pp. 830–838. https://doi.org/10.1016/j.jechem.2017.06.005

    Article  Google Scholar 

  29. Hu, Y., Guo, Y., Sun, J., Li, H., and Liu, W., J. Mater. Chem. A, 2019, vol. 7, no. 35, pp. 20103–20120. https://doi.org/10.1039/C9TA06930E

    Article  CAS  Google Scholar 

  30. Ruhaimi, A.H., Aziz, M.A.A., and Jalil, A.A., J. CO2 Util., 2021, vol. 43, ID 101357. https://doi.org/10.1016/j.jcou.2020.101357

    Article  CAS  Google Scholar 

  31. Portyakova, I.S., Antipov, A.V., Mishin, I.V., and Kustov, L.M., Russ. J. Phys. Chem. A, 2020, vol. 94, pp. 1482–1489. https://doi.org/10.1134/S0036024420070237

    Article  CAS  Google Scholar 

  32. Sun, H., Wu, C., Shen, B., Zhang, X., Zhang, Y., and Huang, J., Mater. Today Sust., 2018, vols. 1–2, pp. 1–27. https://doi.org/10.1016/j.mtsust.2018.08.001

    Article  Google Scholar 

  33. Kierzkowska, A.M., Pacciani, R., and Müller, C.R., ChemSusChem, 2013, vol. 6, no. 7, pp. 1130–1148. https://doi.org/10.1002/cssc.201300178

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y., Memon, M.Z., Seelro, M.A., Fu, W., Gao, Y., Dong, Y., and Ji, G., Int. J. Hydrogen Energy, 2021, vol. 46, no. 45, pp. 23358–23379. https://doi.org/10.1016/j.ijhydene.2021.01.206

    Article  CAS  Google Scholar 

  35. Greish, A.A., Kustov, A.L., and Sokolovskiy, P.V., Russ. J. Phys. Chem. A, 2021, vol. 95, pp. 1655–1658. https://doi.org/10.1134/S0036024421080112

    Article  CAS  Google Scholar 

  36. Okunev, A.G., Sharonov, V.E., Aristov, Y.I., and Parmon, V.N., React. Kinet. Catal. Lett., 2000, vol. 71, pp. 355–362. https://doi.org/10.1023/A:1010395630719

    Article  CAS  Google Scholar 

  37. Park, Y.C., Jo, S.H., Kim, J.Y., Won, Y., Nam, H., Yi, C.K., Eom, T.H., and Lee, J.B., Int. J. Greenhouse Gas Control, 2020, vol. 103, ID 103192. https://doi.org/10.1016/j.ijggc.2020.103192

    Article  CAS  Google Scholar 

  38. Kim, K., Yang, S., Lee, J.B., Eom, T.H., Ryu, C.K., Lee, H.J., Bae, T.S., and Lee, S.J., Korean J. Chem. Eng., 2015, vol. 32, pp. 677–684. https://doi.org/10.1007/s11814-014-0297-7

    Article  CAS  Google Scholar 

  39. Park, Y.C., Jo, S.H., Ryu, C.K., and Yi, C.K., Energy Procedia, 2011, vol. 4, pp. 1508–1512. https://doi.org/10.1016/j.egypro.2011.02.018

    Article  Google Scholar 

  40. Park, Y.C., Jo, S.H., Lee, D.H., Yi, C.K., Ryu, C.K., Kim, K.S., You, C.H., and Park, K.S., Energy Procedia, 2013, vol. 37, pp. 122–126. https://doi.org/10.1016/j.egypro.2013.05.092

    Article  CAS  Google Scholar 

  41. Park, Y.C., Jo, S.H., Kyung, D.H., Kim, J.Y., Yi, C.K., Ryu, C.K., and Shin, M.S., Energy Procedia, 2014, vol. 63, pp. 2261–2265. https://doi.org/10.1016/j.egypro.2014.11.245

    Article  CAS  Google Scholar 

  42. Won, Y., Kim, J.Y., Park, Y.C., Yi, C.K., Nam, H., Woo, J.M., Jin, G.T., Park, J., Lee, S.Y., and Jo, S.H., Energy, 2020, vol. 208, ID 118188. https://doi.org/10.1016/j.energy.2020.118188

    Article  CAS  Google Scholar 

  43. Luo, P.C., Zhang, Z.B., Jiao, Z., and Wang, Z.X., Ind. Eng. Chem. Res., 2003, vol. 42, pp. 4861–4866. https://doi.org/10.1021/ie030029m

    Article  CAS  Google Scholar 

  44. Wallace, J. and Krumdieck, S., Proc. Inst. Mech. Eng. Sci.,Part C: J. Mech. Eng. Sci., 2005, vol. 219, pp. 1225–1233. https://doi.org/10.1243/095440605X32011

    Article  CAS  Google Scholar 

  45. Cheng, H.H. and Tan, C.S., Sep. Purif. Technol., 2011, vol. 82, pp. 156–166. https://doi.org/10.1016/j.seppur.2011.09.004

    Article  CAS  Google Scholar 

  46. Gale, J., A global perspective on the Status of carbon capture, 2016 NETL CO2 Capture Technology Project Meet., Pittsburgh, USA, 2016. https://netl.doe.gov/sites/default/files/event-proceedings/2016/c02%20cap%20review/1-Monday/J-Gale-IEAGG-Status-of-Carbon-Capture.pdf.

  47. Just, P.E., Energy Procedia, 2013, vol. 37, pp. 314–324. https://doi.org/10.1016/j.egypro.2013.05.117

    Article  CAS  Google Scholar 

  48. Buvik, V., Høisæter, K.K., Vevelstad, S.J., and Knuutila, H.K., Int. J. Greenhouse Gas Control, 2021, vol. 106, ID 103246. https://doi.org/10.1016/j.ijggc.2020.103246

    Article  CAS  Google Scholar 

  49. Bazhenov, S.D., Novitskii, E.G., Vasilevskii, V.P., Grushevenko, E.A., Bienko, A.A., and Volkov, A.V., Russ. J. Appl. Chem., 2019, vol. 92, pp. 1045–1063. https://doi.org/10.1134/S1070427219080019

    Article  CAS  Google Scholar 

  50. Park, I.I.H. and Choi, E.J., Polymer, 1996, vol. 37, no. 2, pp. 313–319. https://doi.org/10.1016/0032-3861(96)81104-9

    Article  CAS  Google Scholar 

  51. Chen, F.F., Huang, K., Fan, J.P., and Tao, D.J., AIChE J., 2018, vol. 64, no. 2, pp. 632–639. https://doi.org/10.1002/aic.15952

    Article  CAS  Google Scholar 

  52. Wu, T.Y., Wang, H.C., Su, S.G., Gung, S.T., Lin, M.W., and Lin, C.B., J. Taiwan Inst. Chem. Eng., 2010, vol. 41, no. 3, pp. 315–325. https://doi.org/10.1016/j.jtice.2009.10.003

    Article  CAS  Google Scholar 

  53. Satyapal, S., Filburn, T., Trela, J., and Strange, J., Energy Fuel, 2001, vol. 15, no. 2, pp. 250–255. https://doi.org/10.1021/ef0002391

    Article  CAS  Google Scholar 

  54. Caplow, M., J. Am. Chem. Soc., 1968, vol. 90, no. 24, pp. 6795–6803. https://doi.org/10.1021/ja01026a041

    Article  CAS  Google Scholar 

  55. Danckwerts, P.V., Chem. Eng. Sci., 1979, vol. 34, no. 4, pp. 443–446. https://doi.org/10.1016/0009-2509(79)85087-3

    Article  CAS  Google Scholar 

  56. Crooks, J.E. and Donnellan, J.P., J. Chem. Soc., Perkin Trans. 2, 1989, vol. 4, pp. 331–333. https://doi.org/10.1039/P29890000331

    Article  Google Scholar 

  57. Yang, Z.-Z., He, L.N., Zhao, Y.N., Li, B., and Yu, B., Energy Environ. Sci., 2011, vol. 4, no. 10, pp. 3971–3975. https://doi.org/10.1039/C1EE02156G

    Article  CAS  Google Scholar 

  58. Bollini, P., Didas, S.A., and Jones, C.W., J. Mater. Chem., 2011, vol. 39, no. 21, pp. 15100–15120. https://doi.org/10.1039/C1JM12522B

    Article  Google Scholar 

  59. Goeppert, A., Czaun, M., Prakash, G.S., and Olah, G.A., Energy Environ. Sci., 2012, vol. 5, no. 7, pp. 7833–7853. https://doi.org/10.1039/C2EE21586A

    Article  CAS  Google Scholar 

  60. Gelles, T., Lawson, S., Rownaghi, A.A., and Rezaei, F., Adsorption, 2020, vol. 26, pp. 5–50. https://doi.org/10.1007/s10450-019-00151-0

    Article  CAS  Google Scholar 

  61. Ioffe, I.I. and Pis’men, L.M., Inzhenernaya khimiya geterogennogo kataliza (Engineering Chemistry of Heterogeneous Catalysis), Moscow: Khimiya, 1965, pp. 300–338.

    Google Scholar 

  62. Xu, X., Song, C., Andresen, J.M., Miller, B.G., and Scaroni, A.W., Energy Fuel, 2002, vol. 16, no. 6, pp. 1463–1469. https://doi.org/10.1021/ef020058u

    Article  CAS  Google Scholar 

  63. Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X., and Song, C., J. Phys. Chem. C, 2009, vol. 113, no. 17, pp. 7260–7268. https://doi.org/10.1021/jp809946y

    Article  CAS  Google Scholar 

  64. Son, W.J., Choi, J.S., and Ahn, W.S., Micropor. Mesopor. Mater., 2008, vol. 113, nos. 1–3, pp. 31–40. https://doi.org/10.1016/j.micromeso.2007.10.049

    Article  CAS  Google Scholar 

  65. Chen, C., Yang, S.T., Ahn, W.S., and Ryoo, R., Chem. Commun., 2009, no. 24, pp. 3627–3629. https://doi.org/10.1039/B905589D

    Article  Google Scholar 

  66. Jung, W. and Lee, J., Energy, 2022, vol. 238, ID 121864. https://doi.org/10.1016/j.energy.2021.121864

    Article  CAS  Google Scholar 

  67. Yue, M.B., Chun, Y., Cao, Y., Dong, X., and Zhu, J.H., Adv. Funct. Mater., 2006, vol. 16, no. 13, pp. 1717–1722. https://doi.org/10.1002/adfm.200600427

    Article  CAS  Google Scholar 

  68. Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J., and Zhu, J.H., Chem. Eur. J., 2008, vol. 14, no. 11, pp. 3442–3451. https://doi.org/10.1002/chem.200701467

    Article  CAS  PubMed  Google Scholar 

  69. Chen, C., Kim, J., and Ahn, W. S., Korean J. Chem. Eng., 2014, vol. 31, pp. 1919–1934. https://doi.org/10.1007/s11814-014-0257-2

    Article  CAS  Google Scholar 

  70. Hicks, J.C., Drese, J.H., Fauth, D.J., Gray, M.L., Qi, G., and Jones, C.W., J. Am. Chem. Soc., 2008, vol. 130, no. 10, pp. 2902–2903. https://doi.org/10.1021/ja077795v

    Article  CAS  PubMed  Google Scholar 

  71. Shen, X., Yan, F., Li, C., Qu, F., Wang, Y., and Zhang, Z., Environ. Sci. Technol., 2021, vol. 55, no. 8, pp. 5236–5247. https://doi.org/10.1021/acs.est.0c07973

    Article  CAS  PubMed  Google Scholar 

  72. Palkovits, R., Yang, C.M., Olejnik, S., and Schüth, F., J. Catal., 2006, vol. 243, no. 1, pp. 93–98. https://doi.org/10.1016/j.jcat.2006.07.004

    Article  CAS  Google Scholar 

  73. Wan, M.M., Zhu, H.Y., Li, Y.Y., Ma, J., Liu, S., and Zhu, J.H., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 15, pp. 12947–12955. https://doi.org/10.1021/am5028814

    Article  CAS  PubMed  Google Scholar 

  74. Iyer, K.S. and Luzinov, I., Macromolecules, 2004, vol. 37, no. 25, pp. 9538–9545. https://doi.org/10.1021/ma0493168

    Article  CAS  Google Scholar 

  75. Karim, A., Tsukruk, V.V., Douglas, J.F., Satija, S.K., Fetters, L.J., Reneker, D.H., and Foster, M.D., J. Phys. II, 1995, vol. 5, no. 10, pp. 1441–1456. https://doi.org/10.1051/jp2:1995193

    Article  CAS  Google Scholar 

  76. Taylor, W. and Jones, R.A.L., Langmuir, 2010, vol. 26, no. 17, pp. 13954–13958. https://doi.org/10.1021/la101881j

    Article  CAS  PubMed  Google Scholar 

  77. Patent US 5087597, Publ. 1992.

  78. Leal, O., Bolívar, C., Ovalles, C., García, J.J., and Espidel, Y., Inorg. Chim. Acta, 1995, vol. 240, no. 1, pp. 183–189. https://doi.org/10.1016/0020-1693(95)04534-1

    Article  CAS  Google Scholar 

  79. Harlick, P.J.E. and Sayari, A., Ind. Eng. Chem. Res., 2007, vol. 46, no. 2, pp. 446–458. https://doi.org/10.1021/ie060774+

    Article  CAS  Google Scholar 

  80. Harlick, P.J.E. and Sayari, A., Ind. Eng. Chem. Res., 2006, vol. 45, no. 9, pp. 3248–3255. https://doi.org/10.1021/ie051286p

    Article  CAS  Google Scholar 

  81. Chang, F.-Y., Chao, K.J., Cheng, H.H., and Tan, C.S., Sep. Purif. Technol., 2009, vol. 70, no. 1, pp. 87–95. https://doi.org/10.1016/j.seppur.2009.08.016

    Article  CAS  Google Scholar 

  82. Huang, H.Y., Yang, R.T., Chinn, D., and Munson, C.L., Ind. Eng. Chem. Res., 2003, vol. 42, no. 12, pp. 2427–2433. https://doi.org/10.1021/ie020440u

    Article  CAS  Google Scholar 

  83. Feng, X., Fryxell, G.E., Wang, L.Q., Kim, A.Y., Liu, J., and Kemner, K.M., Science, 1997, vol. 276, no. 5314, pp. 923–926. https://doi.org/10.1126/science.276.5314.923

    Article  CAS  Google Scholar 

  84. Qi, G., Fu, L., and Giannelis, E.P., Nature Commun., 2014, vol. 5, no. 1, ID 5796. https://doi.org/10.1038/ncomms6796

    Article  CAS  Google Scholar 

  85. Kim, H.J., Moon, J.H., and Park, J.W., J. Colloid Interface Sci., 2000, vol. 227, no. 1, pp. 247–249. https://doi.org/10.1006/jcis.2000.6861

    Article  CAS  PubMed  Google Scholar 

  86. Yang, Y., Li, H., Chen, S., Zhao, Y., and Li, Q., Langmuir, 2010, vol. 26, no. 17, pp. 13897–13902. https://doi.org/10.1021/la101281v

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 23-23-10080, https://rscf.ru/project/23-23-10080/) and Novosibirsk oblast (agreement no. r-47 of April 3, 2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kozlov.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 226–244, August, 2023 https://doi.org/10.31857/S0044461823030015

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshkovas, A.Z., Veselovskaya, J.V., Selishchev, D.S. et al. Low-Temperature Composite CO2 Sorbents Based on Amine-Containing Compounds. Russ J Appl Chem 96, 257–274 (2023). https://doi.org/10.1134/S1070427223030011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030011

Keywords:

Navigation