Skip to main content
Log in

The Math Correlation of Material Chemistry and Physical Factors on Phase Inversion in the Separation of Aqueous and Organic Phases in an Agitated Vessel

  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Phase inversion phenomenon is important in design of liquid-liquid extraction systems. In this study, the effects of the impeller speed, the hold up of dispersed phase, and surface active agent concentration on phase inversion phenomenon for toluene-water and butanol-water with sodium dodecyl sulfate (SDS) as surface active agent, were investigated. Based on the experiments in this work, some models are developed for the impeller speeds when the phase inversion phenomenon has been occurred (NPI). Comparison between models for toluene-water and butanol-water systems with paddle and propeller blades, with and without SDS has been done. The dispersed to continuous phase ratios (volumetric ratio of toluene to water) were divided into three regions VT/VW < 0.5, 0.5 < VT/VW < 1, and VT/VW > 1. It was found that by increasing the impeller speed and also the ratio of dispersed to continuous phase the separation time and the occurrence probability of the phase inversion phenomenon was increased. Moreover, by increasing the volumetric ratio of the dispersed to the continuous phase the separation time was raised and at a specific impeller speed the separation time did not depend on the impeller speed. By increasing the concentration of SDS up to 40 mg, the phase inversion phenomenon occurred at higher impeller speeds. In the same surface active agent concentration, the impeller speed for the phase inversion occurrence by paddle blade was higher than propeller blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Martini, P., Adamo, A., Syna, N., Boschi, A., Uccelli, L., Weeranoppanant, N., Markham, J., and Pascali, G., Molecules, 2019, vol. 24, p. 334. https://doi.org/10.3390/molecules24020334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hasan, B.O., Exp. Therm. Fluid Sci., 2018, vol. 96, pp. 48–62. https://doi.org/10.1016/j.expthermflusci.2018.02.013

    Article  Google Scholar 

  3. Afshar Ghotli, R., Raman, A.A., Ibrahim, S., and Baroutian, S., Chem. Eng. Commun., 2013, vol. 200, pp. 595–627. https://doi.org/10.1080/00986445.2012.717313

    Article  CAS  Google Scholar 

  4. Widianto, A.Y., Aubin, J., Xuereb, C. and Poux, M., Catal. Today, 2020, vol. 346, pp. 46–57. https://doi.org/10.1016/j.cattod.2019.02.064

    Article  CAS  Google Scholar 

  5. Perdih, T.S., Zupanc, M., and Dular, M., Ultrason. Sonochem., 2019, vol. 51, pp. 298–304. https://doi.org/10.1016/j.ultsonch.2018.10.003

    Article  CAS  Google Scholar 

  6. Hiemenz, P.C. and Rajagopalan, R., Principles of Colloid and Surface Chemistry, Revised and Expanded, CRC press, 2016.

  7. Qiu, F., Liu, Z., Liu, R., Quan, X., Tao, C., and Wang, Y., Exp. Therm Fluid Sci., 2018, vol. 97, pp. 351–363. https://doi.org/10.1016/j.expthermflusci.2018.04.006

    Article  CAS  Google Scholar 

  8. Yang, Y., Guo, J., Ren, B., Zhang, S., Xiong, R., Zhang, D., Cao, C., Liao, Z., Zhang, S., and Fu, S., Exp. Therm. Fluid Sci., 2019, vol. 100, pp. 271–291. https://doi.org/10.1016/j.expthermflusci.2018.09.013

    Article  Google Scholar 

  9. de Oliveira, C.B., Souza, W.J., Santana, C.F., Santana, C.C., Dariva, C., Franceschi, E., Guarnieri, R.A., Fortuny, M., and Santos, A.F., Energy & Fuels, 2018, vol. 32, pp. 8880–8890. https://doi.org/10.1021/acs.energyfuels.8b01227

    Article  CAS  Google Scholar 

  10. Picchi, D. and Poesio, P., Int. J. Multiphase Flow, 2016. vol. 84, pp. 176–187. https://doi.org/10.1016/j.ijmultiphaseflow.2016.03.002

    Article  CAS  Google Scholar 

  11. Binks, B.P. and Olusanya, S.O., Chem. Sci., 2017, vol. 8. pp. 708–723. https://doi.org/10.1039/C6SC03085H

    Article  PubMed  Google Scholar 

  12. Asadollahzadeh, M., Torab-Mostaedi, M., Shahhosseini, S., and Ghaemi, A., Chem. Eng. Res. Des., 2016, vol. 105, pp. 177–187. https://doi.org/10.1016/j.cherd.2015.11.019

    Article  CAS  Google Scholar 

  13. Rodger, W.A., Trice Jr, V.G., and Rushton, J.H., Chem. Eng. Progr., 1956, vol. 52, p. 6

    Google Scholar 

  14. Selker, A.H. and Sleicher Jr, C.A., Can. J. Chem. Eng., 1965, vol. 43, pp. 298–301. https://doi.org/10.1002/cjce.5450430606

    Article  Google Scholar 

  15. Kato, S., Nakayama, E., and Kawasaki, J., Can. J. Chem. Eng., 1991, vol. 69, pp. 222–227. https://doi.org/10.1002/cjce.5450690126

    Article  CAS  Google Scholar 

  16. Efthimiadu, I., Kocianova, E., and Moore, I.P.T., Proceedings of the 1994 ICHEME Research Event., 1994, vol. 2, pp. 1020–1022.

    CAS  Google Scholar 

  17. Miller, D.J., Henning, T., and Grünbein, W., Colloids Surf., A, 2001, vol. 183, pp. 681–688. https://doi.org/10.1016/S0927-7757(01)00494-0

    Article  Google Scholar 

  18. Yeo, L.Y., Matar, O.K., de Ortiz, E.S.P., and Hewitt, G.F., Chem. Eng. Sci., 2002, vol. 57, pp. 3505–3520. https://doi.org/10.1016/S0009-2509(02)00260-9

    Article  CAS  Google Scholar 

  19. Yeo, L.Y., Matar, O.K., de Ortiz, E.S.P., and Hewitt, G.F., J. Colloid Interface Sci., 2002, vol. 248, pp. 443–454. https://doi.org/10.1006/jcis.2001.8159

    Article  CAS  PubMed  Google Scholar 

  20. Brauner, N. and Ullmann, A., Int. J. Multiphase Flow, 2002, vol. 28, pp. 1177–1204. https://doi.org/10.1016/S0301-9322(02)00017-4

    Article  CAS  Google Scholar 

  21. Sajjadi, S., Zerfa, M., and Brooks, B.W., Colloids Surf., A, 2003, vol. 218, pp. 241–254. https://doi.org/10.1016/S0927-7757(02)00596-4

    Article  CAS  Google Scholar 

  22. Deshpande, K.B. and Kumar, S., Chem. Eng. Sci., 2003, vol. 58, pp. 3829–3835. https://doi.org/10.1016/S0009-2509(03)00235-5

    Article  CAS  Google Scholar 

  23. Bouchama, F., Van Aken, G.A., Autin, A.J.E., and Koper, G.J.M., Colloids Surf., A, 2003, vol. 231, pp. 11–17. https://doi.org/10.1016/j.colsurfa.2003.08.011

    Article  CAS  Google Scholar 

  24. Liu, L., Matar, O.K., de Ortiz, E.S.P., and Hewitt, G.F., Chem. Eng. Sci., 2005, vol. 60, pp. 85–94. https://doi.org/10.1016/j.ces.2004.07.066

    Article  CAS  Google Scholar 

  25. Hu, B., Angeli, P., Matar, O.K. and Hewitt, G.F., Chem. Eng. Sci., 2005, vol. 60, pp. 3487–3495. https://doi.org/10.1016/j.ces.2005.02.002

    Article  CAS  Google Scholar 

  26. Ioannou, K., Nydal, O.J., and Angeli, P., Exp. Therm. Fluid Sci., 2005, vol. 29, pp. 331–339. https://doi.org/10.1016/j.expthermflusci.2004.05.003

    Article  CAS  Google Scholar 

  27. Hu, B., Matar, O.K., Hewitt, G.F., and Angeli, P., Chem. Eng. Sci., 2006, vol. 615, pp. 4994–4997. https://doi.org/10.1016/j.ces.2006.03.053

    Article  CAS  Google Scholar 

  28. Piela, K., Delfos, R., Ooms, G., Westerweel, J., Oliemans, R.V.A., and Mudde, R.F., Int. J. Multiphase Flow, 2006, vol. 32, pp. 1087–1099. https://doi.org/10.1016/j.ijmultiphaseflow.2006.05.001

    Article  CAS  Google Scholar 

  29. Amouei, M., Khadiv, P.P., Mousavian, M., Hedayat, N., and Davoudi, A., Iran. J. Chem. Eng., 2008, vol. 5, pp. 55–63.

    Google Scholar 

  30. Hedayat, N., Khadiv, P.P., and Mousavian, M., Iran. J. Chem. Eng., 2009, vol. 28, pp. 91–95.

    CAS  Google Scholar 

  31. Piela, K., Djojorahardjo, E., Koper, G.J.M., and Ooms, G., Chem. Eng. Res. Des., 2009, vol. 87, pp. 1466–1470. https://doi.org/10.1016/j.cherd.2009.04.009

    Article  CAS  Google Scholar 

  32. De, B., Mandal, T.K., and Das, G., Chem. Eng. Res. Des., 2010, vol. 88, pp. 819–826. https://doi.org/10.1016/j.cherd.2010.01.003

    Article  CAS  Google Scholar 

  33. Hapanowicz, J., Flow Meas. Instrum., 2010, vol. 21, pp. 284–291. https://doi.org/10.1016/j.flowmeasinst.2010.03.001

    Article  CAS  Google Scholar 

  34. Xu, J.Y., Li, D.H., Guo, J., and Wu, Y.X., Int. J. Multiphase Flow, 2010, vol. 36, pp. 930–939. https://doi.org/10.1016/j.ijmultiphaseflow.2010.08.007

    Article  CAS  Google Scholar 

  35. Preziosi, V., Perazzo, A., Caserta, S., Tomaiuolo, G., and Guido, S., Chem. Eng., 2013, vol. 32, pp. 1585–1590. https://doi.org/10.3303/CET1332265

    Article  Google Scholar 

  36. Asadabadi, M.R., Abolghasemi, H., Maragheh, M.G., and Nasab, P.D., Korean J. Chem. Eng., 2013, vol. 30, pp. 733–738. https://doi.org/10.1007/s11814-012-0195-9

    Article  CAS  Google Scholar 

  37. Wang, W., Cheng, W., Duan, J., Gong, J., Hu, B., and Angeli, P., Chem. Eng. Sci., 2014, vol. 105, pp. 22–31. https://doi.org/10.1016/j.ces.2013.10.012

    Article  CAS  Google Scholar 

  38. Perazzo, A., Preziosi, V., and Guido, S., Adv. Colloid Interface Sci., 2015, vol. 222, pp. 581–599. https://doi.org/10.1016/j.cis.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  39. Hołda, A.K. and Vankelecom, I.F., J. Appl. Polym. Sci., 2015, vol. 132, p. 42130. https://doi.org/10.1002/app.42130

    Article  CAS  Google Scholar 

  40. Soin, N., Boyer, D., Prashanthi, K., Sharma, S., Narasimulu, A.A., Luo, J., Shah, T.H., Siores, E., and Thundat, T., Chem. Commun., 2015, vol. 51, pp. 8257–8260. https://doi.org/10.1039/C5CC01688F

    Article  CAS  Google Scholar 

  41. Li, L., Chen, M., Dong, Y., Dong, X., Cerneaux, S., Hampshire, S., Cao, J., Zhu, L., Zhu, Z., and Liu, J., J. Eur. Ceram. Soc., 2016, vol. 36, pp. 2057–2066. https://doi.org/10.1016/j.jeurceramsoc.2016.02.020

    Article  CAS  Google Scholar 

  42. Munirasu, S., Banat, F., Durrani, A.A., and Haija, M.A., Desalination, 2017, vol. 417, pp. 77–86. https://doi.org/10.1016/j.desal.2017.05.019

    Article  CAS  Google Scholar 

  43. Chuesiang, P., Siripatrawan, U., Sanguandeekul, R., McLandsborough, L., and McClements, D.J., J. Colloid Interface Sci., 2018, vol. 514, pp. 208–216. https://doi.org/10.1016/j.jcis.2017.11.084

    Article  CAS  PubMed  Google Scholar 

  44. de Oliveira Honse, S., Kashefi, K., Charin, R.M., Tavares, F.W., Pinto, J.C., and Nele, M., Colloids Surf. A, 2018, vol. 538, p. 565, vol. 573. https://doi.org/10.1016/j.colsurfa.2017.11.028

    Article  CAS  Google Scholar 

  45. Pierlot, C., Ontiveros, J.F., Royer, M., Catte, M., and Salager, J.L., Colloids Surf. A, 2018, vol. 536, p. 113, vol.124. https://doi.org/10.1016/j.colsurfa.2017.07.030

    Article  CAS  Google Scholar 

  46. Binks, B.P. and Shi, H., Langmuir, 2019, vol. 35, pp. 4046–4057. https://doi.org/10.1021/acs.langmuir.8b04151

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Z., Zhao, D., Xu, M., and Xu, Y., Macromol. Rapid Commun., 2000, vol. 21, p. 574. https://doi.org/10.1002/1521-3927(20000601)21:9<574::AID-MARC574>3.0.CO;2-O

    Article  CAS  Google Scholar 

  48. Agung, I.G.N., 2011, Series Data Analysis Using EViews, New York: John Wiley & Sons.

    Google Scholar 

  49. Eviews 6 User’s Guide, Quantitative Micro Sftware, LLC, 2007.

  50. Eviews 4 User’s Guide, Quantitative Micro Software, 2000.

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoomeh Hajikarimian.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajikarimian, M., Sheydaei, M. The Math Correlation of Material Chemistry and Physical Factors on Phase Inversion in the Separation of Aqueous and Organic Phases in an Agitated Vessel. Russ J Appl Chem 96, 245–257 (2023). https://doi.org/10.1134/S1070427223020168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223020168

Keywords:

Navigation