Skip to main content
Log in

Impact of the Chelate Complex of Nitrilotris(methylenephosphonic Acid) with Copper on the Corrosion-Electrochemical Behavior of Carbon Steel in an Aqueous Medium

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of the Na4[CuN(CH2PO3)3]·13H2O complex compound with a chelate structure on the corrosion-electrochemical behavior of 20# steel in a borate buffer solution at pH 7.4 and natural aeration was studied using the potentiodynamic method and methods of X-ray photoelectron spectroscopy and surface scanning electron microscopy with microanalysis. It was established that in the concentration range of 0.2–1.0 mM the complex under study inhibits the anodic dissolution of the metal and drives it at higher concentrations. In terms of its effect on the corrosion-electrochemical behavior of steel, the Na4[CuN(CH2PO3)3]·13H2O complex differs significantly from the previously studied complexes Na4[ZnN(CH2PO3)3]·13H2O and Na4[Cd(H2O)N(CH2PO3)3]·7H2O. In the potential range –0.66…–0.05 V relative to the Ag,AgCl|KCl-electrode (SSCE) a layer of metallic copper is generated on the surface in the form of nano-sized crystals, shielding the surface of the steel. In the potential range of 0.05–0.13 V (SSCE), metallic copper is oxidized, and with a further increase in the potential, a layer of mixed iron and copper oxides is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Demadis, K.D., Katarachia, S.D., and Koutmos, M., Inorg. Chem. Commun., 2005, no. 8, pp. 254–258. https://doi.org/10.1016/j.inoche.2004.12.019

  2. Somov, N.V. and Chausov, F.F., Crystallography Reports, 2014, vol. 59, no. 1, pp. 66–70. https://doi.org/10.1134/S1063774513050118

    Article  Google Scholar 

  3. Chausov, F.F., Kazantseva, I.S., Reshetnikov, S.M., Lomova, N.V., Maratkanova, A.N., and Somov , N.V., ChemistrySelect, 2020, vol. 5, no. 43, pp. 13711–13719. https://doi.org/10.1002/slct.202003255

    Article  CAS  Google Scholar 

  4. Kuznetsov, Y.I. and Redkina, G.V., Coatings, 2022, vol. 12, no. 2, ID 149. https://doi.org/10.3390/coatings12020149

    Article  CAS  Google Scholar 

  5. Somov, N.V. and Chausov, F.F., Crystallography Reports, 2015, vol. 60, no. 2, pp. 210–216. https://doi.org/10.1134/S1063774515010228

    Article  CAS  Google Scholar 

  6. Chausov, F.F., Kazantseva, I.S., Lomova, N.V., Kholzakov, A.V., Shabanova, I.N., and Suksin, N.E., Russ. J. Appl. Chem., 2022, vol. 95, no. 4, pp. 519–528. https://doi.org/10.1134/S1070427222040073

    Article  CAS  Google Scholar 

  7. Zhuk, N.P., Kurs teorii korrozii i zashchity metallov (Course on the Theory of Corrosion and Protection of Metals), Moscow: Al’yans, 2006.

    Google Scholar 

  8. Chausov, F.F., Somov, N.V., Zakirova, R.M., Alalykin, A.A., Reshetnikov, S.M., Petrov, V.G., Aleksandrov, V.A., and Shumilova, M.A., Bull. Russ. Acad. Sci.: Physics, 2017, vol. 81, no. 3, pp. 365–367. https://doi.org/10.3103/S106287381703008X..

    Article  CAS  Google Scholar 

  9. Chausov, F.F., Lomova, N.V., Dobysheva, L.V., Somov, N.V., Ulʹyanov, A.L., Maratkanova, A.N., Kholzakov, A.V., and Kazantseva, I.S., J. Solid State Chem., 2020, vol. 286, ID 121324. https://doi.org/10.1016/j.jssc.2020.121324

    Article  CAS  Google Scholar 

  10. Dobysheva, L.V., Chausov, F.F., and Lomova, N.V., Mater. Today Commun., 2021, vol. 29. ID 102892. https://doi.org/10.1016/j.mtcomm.2021.102892

    Article  Google Scholar 

  11. Kuznetsov, Yu.I. and Raskol’nikov, A.F., Zashchita Metallov, 1992, vol. 28, no. 2, pp. 249–256.

    Google Scholar 

  12. Somov, N.V., Chausov, F.F., Zakirova, R.M., Shumilova, M.A., Aleksandrov, V.A., and Petrov, V.G., Crystallography Reports, 2015, vol. 60, pp. 853–859. https://doi.org/10.1134/S1063774515060334

    Article  CAS  Google Scholar 

  13. Benzakour, J. and Daerja, A., Electrochim. Acta, 1993, vol. 38, pp. 2547–2550. https://doi.org/10.1016/0013-4686(93)80151-O

    Article  CAS  Google Scholar 

  14. Cohen, M., Mitchell, D., and Hashimoto, K., J. Electrochem. Soc., 1979, vol. 126, pp. 442–444. https://doi.org/10.1149/1.2128899

    Article  CAS  Google Scholar 

  15. Delplanke, J.L., Surf. Technol., 1983, vol. 20, pp. 71–81. https://doi.org/10.1016/0376-4583(83)90078-X

    Article  Google Scholar 

  16. Martini, E.M.A. and Muller, I.L., J. Braz. Chem. Soc., 1999, vol. 10, no. 6, pp. 505–511. https://doi.org/10.1590/S0103-50531999000600014

    Article  CAS  Google Scholar 

  17. Holmes, W., The Anatomical Record., 1943, vol. 86, pp. 157–187. https://doi.org/10.1002/ar.1090860205

    Article  Google Scholar 

  18. Biesinger, M.C., Surface and Interface Analysis, 2017, vol. 49, pp. 1325–1334. https://doi.org/10.1002/sia.6239

    Article  CAS  Google Scholar 

  19. Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., and McIntyre, N.S., Surface and Interface Analysis, 2004, vol. 36, pp. 1564–1574. https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  20. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie: Perkin-Elmer Corporation, 1992.

    Google Scholar 

  21. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, 1974.

  22. Tomashov, N.D. and Chernova, G.P., Passivnost’ i zashchita metallov ot korrozii (Passivity and Protection of Metals from Corrosion), Moscow: Nauka, 1965.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use of the Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences “Surface and New Materials.”

Funding

The work was carried out in accordance with the scientific research plan no. 121030100002-0 of the Ministry of Science and Higher Education of the Russian Federation. XPS studies were carried out with the support of the Ministry of Science and Higher Education of Russia within the framework of agreement no. 075-15-2021-1351 regarding the development of the X-ray photoelectron spectroscopy method.

Author information

Authors and Affiliations

Authors

Contributions

I.A. Zhilin and F.F. Chausov proposed a statement of the problem and developed a research program, prepared initial reagents and samples, and conducted electrochemical studies; N.V. Lomova and N.Yu. Isupov carried out X-ray photoelectron spectroscopic analysis of the surface of the samples; I.S. Kazantseva interpreted the results of electrochemical studies; I.K. Averkiev conducted electron microscopic studies of the samples.

Corresponding author

Correspondence to F. F. Chausov.

Ethics declarations

The authors declare that there are no conflicts of interest to disclose in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 184–199, February, 2023 https://doi.org/10.31857/S004446182302007X

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilin, I.A., Chausov, F.F., Lomova, N.V. et al. Impact of the Chelate Complex of Nitrilotris(methylenephosphonic Acid) with Copper on the Corrosion-Electrochemical Behavior of Carbon Steel in an Aqueous Medium. Russ J Appl Chem 96, 176–189 (2023). https://doi.org/10.1134/S1070427223020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223020089

Keywords:

Navigation