Skip to main content
Log in

Calculation and Simulation of Flowsheets for Processing Flue Gases from Thermal Power Plants to Methanol

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Several flowsheets for processing flue gases from thermal power plants to commercial-quality methanol, differing in the steps of producing the feedstock for the methanol synthesis, were considered. The dependence of the methanol yield, energy efficiency, and carbon footprint of the technology as a whole (from the step of СО2 capture from flue gases to the step of methanol extraction) on the composition of flue gases (СО2 concentration) and temperature of their flow was studied. The option of processing flue gases with high initial flow temperature using the flowsheet involving high-temperature steps of СО2 separation and electrolysis was considered. Taking into account the recovery of the heat from flows and steam generation, this flowsheet has high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1.
Fig. 2.

REFERENCES

  1. Gazprom v tsifrakh 2016–2020: Spravochnik (Gazprom in Numerals 2016–2020: Handbook), Report of PAO Gazprom for the Year 2020, p. 52.

  2. Ayala, P., Proc. Conf. Horizon 2020 European Union Funding for Research & Innovation, Brussels, Sept. 13, 2018. https://etipwind.eu/wp-content/uploads/MefCO2-slides.pdf.

  3. Gentile, G., Bonalumi, D., Pieterse, J.A.Z., Sebastiani, F., Lucking, L., and Manzolini, G., J. CO2 Util., 2022, vol. 56, ID 101852. https://doi.org/10.1016/j.jcou.2021.101852

    Article  CAS  Google Scholar 

  4. Belikov, S.E. and Kotler, V.R., Kotly teplovykh elektrostantsii i zashchita atmosfery (Boilers of Thermal Power Plants and Air Protection), Moscow: Akva-Term, 2008.

    Google Scholar 

  5. Zvereva, E.R. and Farakhov, T.M., Energoresursosberegayushchie tekhnologii i apparaty TES pri rabote na mazutakh (Power- and Resource-Saving Technolopies and Equipment of TPPs Powered by Fuel Oils), Laptev, A.G., Ed., Moscow: Teplotekhnik, 2012.

    Google Scholar 

  6. Gribkov, A.M., Vybor optimal’nykh razmerov dymovykh trub i vneshnikh gazokhodov: uchebnoe posobie (Choice of the Optimum Size of Chimneys and External Gas Lines: Textbook), Kazan: Kazanskii Gos. Energet. Univ., 2016.

    Google Scholar 

  7. Aksyutin, O.E., Ishkov, A.G., Khvorov, G.A., Yumashev, M.V., Yurov, E.V., Mokhov, V.P., and Mokhov, O.V., Gaz. Prom-st., 2017, no. S1 (750), pp. 64–69.

    Google Scholar 

  8. STO (Institutional Standard) Gazprom 2-3.5-039–2005: Catalog of Specific Emissions of Harmful Substances from Gas-Turbine Pumping Installations.

  9. Joo, O.-S., Jung, K.-D., Moon, I., Rozovskii, A.Y., Lin, G.I., Han, S.-H., and Uhm, S.-J., Ind. Eng. Chem. Res., 1999, vol. 38, pp. 1808–1812. https://doi.org/10.1021/ie9806848

    Article  CAS  Google Scholar 

  10. Joo, O.-S., Jung, K.-D., and Jung, Y., Stud. Surf. Sci. Catal., 2004, vol. 153, pp. 67–72. https://doi.org/10.1016/S0167-2991(04)80221-0

    Article  CAS  Google Scholar 

  11. Dunstan, M.T., Donat, F., Bork, A.H., Grey, C.P., and Müller, C.R., Chem. Rev., 2021, vol. 121, no. 20, pp. 12681–12745. https://doi.org/10.1021/acs.chemrev.1c00100

    Article  CAS  PubMed  Google Scholar 

  12. Sebbahi, S., Nabil, N., Alaoui-Belghiti, A., Laasri, S., Rachidi, S., and Hajjaji, A., Mater. Today: Proc., 2022, vol. 66, no. 1, pp. 140–145. https://doi.org/10.1016/j.matpr.2022.04.264

    Article  CAS  Google Scholar 

  13. Buttler, A. and Spliethoff, H., Renew. Sustain. Energy Rev., 2018, vol. 82, pp. 2440–2454. https://doi.org/10.1016/j.rser.2017.09.003

    Article  CAS  Google Scholar 

  14. Stoots, C.M., O’Brien, J.E., Condie, K.G., and Hartvigsen, J.J., Int. J. Hydrogen Energy, 2010, vol. 35, pp. 4861–4870. https://doi.org/10.1016/j.ijhydene.2009.10.045

    Article  CAS  Google Scholar 

  15. Zhang, W., Zheng, Y., Yu, B., Wang, J., and Chen, J., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 29911–29920. https://doi.org/10.1016/j.ijhydene.2017.06.225

    Article  CAS  Google Scholar 

  16. Parigi, D., Giglio, E., Soto, A., and Santarelli, M., J. Cleaner Prod., 2019, vol. 226, pp. 679–691. https://doi.org/10.1016/j.jclepro.2019.04.087

    Article  CAS  Google Scholar 

  17. PNST (Preliminary National Standard of the Russian Federation) 646–2022: Green Standards. Green Products and Green Technologies. Procedure for Evaluating a Decrease in the Carbon Footprint.

Download references

Funding

The study was performed within the framework of the government assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (FFZN-2022-0004, Capture and Utilization of Carbon Dioxide, no. 1022090100031-1-1.4.3).

Author information

Authors and Affiliations

Authors

Contributions

S.D. Bazhenov: literature search; M.I. Afokin: development of flowsheets; E.G. Galanova and M.V. Magomedova: calculation of flowsheets using AspenPlus program, optimization of thermal flows, and analysis of the results obtained; K.A. Chistyakov: calculation of the carbon footprint of the technologies.

Corresponding author

Correspondence to E. G. Galanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 151–161, February, 2023 https://doi.org/10.31857/S0044461823020032

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanova, E.G., Magomedova, M.V., Chistyakov, K.A. et al. Calculation and Simulation of Flowsheets for Processing Flue Gases from Thermal Power Plants to Methanol. Russ J Appl Chem 96, 146–155 (2023). https://doi.org/10.1134/S107042722302003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722302003X

Keywords:

Navigation