Skip to main content
Log in

Сatalysts for Electrooxidation of Biomass Processing Products

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In recent years, active research has been carried out in the field of catalysts for the electrooxidation of water-soluble products of biomass processing on the anodes of electrolysers, coupled with the process of producing hydrogen at the cathodes of these devices. Biomass processing products that are promising for electrooxidation are glycerol, glucose, furfural and 5-hydroxymethylfurfural. The review examines studies of catalysts for the electrooxidation of glycerol, glucose, furfural, and 5-hydroxymethylfurfural based on metals of various groups. Electrooxidation of these organic compounds on catalysts based on noble metals (platinum group metals and gold) and their alloys begins in the potential range from 0.3 to 0.7 V [reversible hydrogen electrode (RHE)], reaching a maximum at ~1 V (RHE). The main disadvantage of catalysts based on noble metals is their high cost. Nickel and сobalt are considered promising among the non-noble metals studied as components of catalysts for these reactions. But in the presence of catalysts based on these metals, the electrooxidation reactions of the noted organic compounds begin at potentials above 1 V (RHE). Glyceraldehyde, dihydroxyacetone, glyceric, tartronic, glycolic, oxalic, glyoxalic and mesoxalic acids can be obtained from the electrooxidation of glycerol. Valuable products of the electrooxidation of glucose, furfural, and 5-hydroxymethylfurfural are gluconic, 2-furancarboxylic, and 2,5-furandicarboxylic acids, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Loony. B., British Petroleum Statistical Review of World Energy, 2022, p. 10. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf.

  2. Ivanova, N.A., Akhpash, A.A., and Dvoryanchikova, A.A., Ekonomika, 2022, no. 1, pp. 31–37. https://doi.org/10.52375/20728689_2022_1_31

  3. Bozell, J.J. and Petersen, G.R., Green Chem., 2010, vol. 12, pp. 539–554. https://doi.org/10.1039/B922014C

    Article  CAS  Google Scholar 

  4. Marchenko, G.N. and Altynbaeva, E.R., Energeticheskaya Politika, 2010, pp. 6–13. https://www.elibrary.ru/nxxccb.

    Google Scholar 

  5. Staffell, I., Scamman, D., Abad, A.V., Balcombe, P., Dodds, P.E., Ekins, P., Shahd, N., and Ward, K.R., Energy Environ. Sci., 2019, vol. 12, pp. 463–491. https://doi.org/10.1039/C8EE01157E

    Article  CAS  Google Scholar 

  6. Filippov, S., Golodnitskii, A., and Kashin, A., Energeticheskaya Politika, 2020, no. 11 (153), pp. 28–39. https://doi.org/10.46920/2409-5516_2020_11153_28

    Article  Google Scholar 

  7. Perivoliotis, D.K., Ekspong, J., Zhao, X., Hu, G., Wågberg, T., and Gracia-Espino, E., Nano Today, 2023, vol. 50. 101883, pp. 1–36. https://doi.org/10.1016/j.nantod.2023.101883

    Article  CAS  Google Scholar 

  8. Song, A., Song, S., Duanmu, M., Tian, H., Liu, H., Qin, X., Shao, G., and Wang, G., Small Sci., 2023, ID 2300036. https://doi.org/10.1002/smsc.202300036

    Article  CAS  Google Scholar 

  9. Lai, Z.I., Lee, L.Q., and Li, H., Micromachines, 2021, vol. 12, ID 1405. https://doi.org/10.3390/mi12111405

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garlyyev, B., Xue, S., Fichtner, J., Bandarenka, A.S., and Andronescu, C., ChemSusChem., 2020, vol. 13, pp. 2513–2521. https://doi.org/10.1002/cssc.202000339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, M., Yuan, Z., Peng, R., Wang, S., and Zou, Y., Energy Environ. Mater., 2022, vol. 5, pp. 1117–1138. https://doi.org/10.1002/eem2.12295

    Article  CAS  Google Scholar 

  12. Li, R., Xiang, K., Peng, Z., Zou, Y., and Wang, S., Adv. Energy Mater., 2021, vol. 11, no. 46, ID 2102292. https://doi.org/10.1002/aenm.202102292

    Article  CAS  Google Scholar 

  13. Gromov, N.V., Taran, O.P., Semeykina, V.S., Danilova, I.G., Pestunov, A.V., Parkhomchuk, E.V., and Parmon, V.N., Solid Acidic NbOx., Catal. Lett., 2017, vol. 147, no. 6, pp. 1485–1495. https://doi.org/10.1007/s10562-017-2056-y

    Article  CAS  Google Scholar 

  14. Aymonier, C., Gromov, N.V., Taran, O.P., and Parmon V., N., Wood Sci. Technol., 2021, vol. 55, pp. 607–624. https://doi.org/10.1007/s00226-021-01271-z

    Article  CAS  Google Scholar 

  15. Gromov, N.V., Taran, O.P., Sorokina, K.N., Mishchen­ko, T.I., Utandi, Sh., and Parmon, V.N., Kataliz v prom-sti, 2016, vol. 16, no. 1, pp. 74–83. https://doi.org/10.18412/1816-0387-2016-1-74-83

    Article  CAS  Google Scholar 

  16. Sherbo, R.S., Kurimoto, A., Brown, C.M., and Berlinguette, C.P., J. Am. Chem. Soc., 2019, vol. 141, no. 19, pp. 7815–7821. https://doi.org/10.1021/jacs.9b01442

    Article  CAS  PubMed  Google Scholar 

  17. Garedew, M., Young-Farhat, D., Jackson, J.E., and Saffron, C.M., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 9, pp. 8375–8386. https://doi.org/10.1021/acssuschemeng.9b00019

    Article  CAS  Google Scholar 

  18. Liu, W., Liu, C., Gogoi, P., and Deng, Y., Engineering, 2020, vol. 6, pp. 1351–1363. https://doi.org/10.1016/j.eng.2020.02.021

    Article  CAS  Google Scholar 

  19. Kwon, Y., Schouten, K.J.P., van der Waal, J.C., de Jong, E., and Koper, M.T.M., ACS Catal., 2016, vol. 6, no. 10, pp. 6704–6717. https://doi.org/10.1021/acscatal.6b01861

    Article  CAS  Google Scholar 

  20. Du, L., Shao, Y., Sun, J., Yin, G., Du, C., and Wang, Y., Catal. Sci. Technol., 2018, vol. 8, pp. 3216–3232. https://doi.org/10.1039/C8CY00533H

    Article  CAS  Google Scholar 

  21. Carneiro, J. and Nikolla, E., Annu. Rev. Chem. Biomol. Eng., 2019, vol. 10, pp. 85–104. https://doi.org/10.1146/annurev-chembioeng-060718-030148

    Article  CAS  PubMed  Google Scholar 

  22. Houache, M.S.E., Hughes, K., and Baranova, E.A., Sustain. Energy Fuels, 2019, vol. 3, pp. 1892–1915. https://doi.org/10.1039/C9SE00108E

    Article  CAS  Google Scholar 

  23. Othman, P.N.A.M., Karim, N.A., and Kamarudin, S.K., Int. J. Energy Res., 2021, vol. 45, no. 9, pp. 12693–12727. https://doi.org/10.1002/er.6712

    Article  CAS  Google Scholar 

  24. Ciriminna, R., Pina, C.D., Rossi, M., and Pagliaro, M., Euro J. Lipid Sci. Technol., 2014, vol. 116, no. 10, pp. 1432–1439. https://doi.org/10.1002/ejlt.201400229

    Article  CAS  Google Scholar 

  25. Lee, D., Kim, Y., Kwon, Y., Lee, J., Kim, T.W., Noh, Y., Kim, W.B., Seo, M.H., Kim, K., and Kim, H.J., Appl. Catal. B: Environmental, 2019, vol. 245, pp. 555–568. https://doi.org/10.1016/j.apcatb.2019.01.022

    Article  CAS  Google Scholar 

  26. Brouzgou, A. and Tsiakaras, P., Top Catal., 2015, vol. 58, pp. 1311–1327. https://doi.org/10.1007/s11244-015-0499-1

    Article  CAS  Google Scholar 

  27. Canete-Rodríguez, A.M., Santos-Duenas, I.M., Jiménez-Hornero, J.E., Ehrenreich, A., Liebl, W., and García-García, I., Process Biochem., 2016, vol. 51, no. 12, pp. 1891–1903. https://doi.org/10.1016/j.procbio.2016.08.028

    Article  CAS  Google Scholar 

  28. Yang, Y. and Mu, T., Green Chem., 2021, vol. 23, pp. 4228–4254. https://doi.org/10.1039/D1GC00914A

    Article  CAS  Google Scholar 

  29. Li, X., Jia, P., and Wang, T., ACS Catal., 2016, vol. 6, no. 11, pp. 7621–7640. https://doi.org/10.1021/acscatal.6b01838

    Article  CAS  Google Scholar 

  30. Mariscal, R., Maireles-Torres, P., Ojeda, M., Saґdaba, I., and Loґpez Granados, M., Energy Environ. Sci., 2016, vol. 9, pp. 1144–1189. https://doi.org/10.1039/C5EE02666K

    Article  CAS  Google Scholar 

  31. Cao, Y., Knijff, J., Delparish, A., dʹAngelo, M.F.N., and Noel, T., ChemSusChem., 2021, vol. 14, no. 2, pp. 590–594. https://doi.org/10.1002/cssc.202002833

    Article  CAS  PubMed  Google Scholar 

  32. Li, K. and Sun, Y., Chem. Eur.J., 2018, vol. 24, no. 69, pp. 18258–18270. https://doi.org/10.1002/chem.201803319

    Article  CAS  PubMed  Google Scholar 

  33. Gonçalves, R.S., Triaca, W.E., and Rabockai, T., Analyt. Lett., 1985, vol. 18, no. 8, pp. 957–973. https://doi.org/10.1080/00032718508066191

    Article  Google Scholar 

  34. Nacef, M., Chelaghmia, M.L., Khelifi, O., Pontie, M., Djelaibia, M., Guerfa, R., Bertagna, V., Vautrin-Ul, C., Fares, A., and Affoune, A.M., Int. J. Hydrogen Energy, 2021, vol. 46, no. 75, pp. 37670–37678. https://doi.org/10.1016/j.ijhydene.2020.07.104

    Article  CAS  Google Scholar 

  35. Tsivadze, A.Yu., Tarasevich, M.R., Andreev, V.N., and Bogdanovskaya, V.A., Ros. Khim. Zhurn., 2006, vol. I, no. 6, pp. 109–114. https://www.elibrary.ru/hzyywh

    Google Scholar 

  36. Davydova, E.S., Modestov, A.D., Novikov, V.T., and Tarasevich, M.R., Uspekhi v Khimii i Khim. Tekhnologii, 2010, vol. XXIV, no. 9, pp. 21–25. https://www.elibrary.ru/rccdeb

    Google Scholar 

  37. Tsivadze, A.Yu., Tarasevich, M.R., Bogdanov­skaya, V.A., and Ehrenburg, M.R., Doklady Chemistry, 2008, vol. 419, pp. 54–56. https://doi.org/10.1134/S0012500808030038

    Article  CAS  Google Scholar 

  38. Simoes, M., Baranton, S., and Coutanceau, C., Chem. Sus. Chem., 2012, vol. 5, no. 11, pp. 2106–2124. https://doi.org/10.1002/cssc.201200335

    Article  CAS  Google Scholar 

  39. Cychy, S., Lechler, S., Huang, Z., Braun, M., Brix, A.C., Blümler, P., Andronescu, C., Schmid, F., Schuhmann, W., and Muhler, M., Chin. J. Catal., 2021, vol. 42, no. 12, pp. 2206–2215. https://doi.org/10.1016/S1872-2067(20)63766-4

    Article  CAS  Google Scholar 

  40. Ahmad, M.S., Rahim, M.H.A., Alqahtani, T.M., Witoon, T., Lim, J.W., and Cheng, C.K., Chemosphere, 2021, vol. 276, ID 130128. https://doi.org/10.1016/j.chemosphere.2021.130128

    Article  CAS  PubMed  Google Scholar 

  41. Ciriminna, R. and Pagliaro, M., Adv. Synth. Catal., 2003, vol. 345, pp. 383–388. https://doi.org/10.1002/adsc.200390043

    Article  CAS  Google Scholar 

  42. Li, T. and Harrington, D.A., ChemSusChem., 2021, vol. 14, no. 6, pp. 1472–1495. https://doi.org/10.1002/cssc.202002669

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, Y., Shen, Y., Luo, X., Liu, G., and Cao, Y., Nanoscale Adv., 2020, vol. 2, pp. 3423–3430. https://doi.org/10.1039/D0NA00252F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. González-Cobos, J., Baranton, S., and Coutanceau, C., J. Phys. Chem. C, 2016, vol. 120, no. 13, pp. 7155–7164. https://doi.org/10.1021/acs.jpcc.6b00295

    Article  CAS  Google Scholar 

  45. Smiljanic, M., Bele, M., Moriau, L., Ruiz-Zepeda, F., Sala, M., and Hodnik, N., J. Phys. Chem. C, 2021, vol. 125, pp. 27534−27542. https://doi.org/10.1021/acs.jpcc.1c08496

    Article  CAS  Google Scholar 

  46. Ruvinsky, P.S., Pronkin, S.N., Zaikovskii, V.I., Bernhardt, P., and Savinova, E.R., Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 6665–6676. https://doi.org/10.1039/b803703e

    Article  CAS  PubMed  Google Scholar 

  47. Caneppele, G.L. and Martins, C.A., J. Electroanal. Chem., 2020, vol. 865, ID 114139. https://doi.org/10.1016/j.jelechem.2020.114139

    Article  CAS  Google Scholar 

  48. Kornienko, G.V., Chaenko, N.V., and Kornienko, V.L., Russ. J. Electrochem., 2015, vol. 51, pp. 1115–1118. https://doi.org/10.1134/S1023193515110063

    Article  CAS  Google Scholar 

  49. Velazquez-Hernandez, I., Zamudio, E., Rodriguez-Valadez, F.J., Garcia-Gomez, N.A., Alvarez-Contreras, L., Guerra-Balcazar, M., and Arjona, N., Fuel, 2020, vol. 262, ID 116556. https://doi.org/10.1016/j.fuel.2019.116556

    Article  CAS  Google Scholar 

  50. Zhao, J., Jing, W., Tan, T., Liu, X., Kang, Y., and Wang, W., New J. Chem., 2020, vol. 44, pp. 4604–4612. https://doi.org/10.1039/C9NJ06259A

    Article  CAS  Google Scholar 

  51. Ahmad, M.S., Singh, S., Cheng, C.K., Ong, H.R., Abdullah, H., Khan, M.R., and Wongsakulphasatch, S., Catal. Commun., 2020, vol. 139, ID 105964. https://doi.org/10.1016/j.catcom.2020.105964

    Article  CAS  Google Scholar 

  52. Duan, Y., Liu, Z., Zhao, B., and Liu, J., RSC Adv., 2020, vol. 10, pp. 15769–15774. https://doi.org/10.1039/D0RA00564A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duan, Y., Liu, Z., Zhao, B., and Liu, J., Inorg. Chem. Commun., 2020, vol. 117, ID 107976. https://doi.org/10.1016/j.inoche.2020.107976

    Article  CAS  Google Scholar 

  54. Zhang, Z., Xin, L., Qi, J., Chadderdon, D.J., Sun, K., Warsko, K.M., and Li, W., Appl. Catal. B: Environmental, 2014, vol. 147, pp. 871–878. https://doi.org/10.1016/j.apcatb.2013.10.018

    Article  CAS  Google Scholar 

  55. Fernández, P.S., Martins, C.A., Angelucci, C.A., Gomes, J.F., Camara, G.A., Martins, M.E., and Tremiliosi-Filho, G., ChemElectroChem., 2014, vol. 2, no. 2, pp. 263–268. https://doi.org/10.1002/celc.201402291

    Article  CAS  Google Scholar 

  56. Kwon, Y., Lai, S.C., Rodriguez, P., and Koper, M.T.M., J. Am. Chem. Soc., 2011, vol. 133, no. 18, pp. 6914−6917. https://doi.org/10.1021/ja200976j

    Article  CAS  PubMed  Google Scholar 

  57. Kwon, Y., Schouten, K.J.P., and Koper, M.T.M., ChemCatChem., 2011, vol. 3, no. 7, pp. 1176–1185. https://doi.org/10.1002/cctc.201100023

    Article  CAS  Google Scholar 

  58. Valter, M., Busch, M., Wickman, B., Grönbeck, H., Baltrusaitis, J., and Hellman, A., J. Phys. Chem. C, 2018, vol. 122, no. 19, pp. 10489–10494. https://doi.org/10.1021/acs.jpcc.8b02685

    Article  CAS  Google Scholar 

  59. Verma, A.M., Laverdure, L., Melander, M.M., and Honkala, K., ACS Catal., 2022, vol. 12, no. 1, pp. 662–675. https://doi.org/10.1021/acscatal.1c03788

    Article  CAS  Google Scholar 

  60. Liu, C., Hirohara, M., Maekawa, T., Chang, R., Hayashi, T., and Chiang, C.Y., Appl. Catal. B: Environmental, 2020, vol. 265, ID 118543. https://doi.org/10.1016/j.apcatb.2019.118543

    Article  CAS  Google Scholar 

  61. de Souza, M.B.C., Vicente, R.A., Yukuhiro, V.Y., Pires, C.T.G.V.M.T., Cheuquepan, W., Bott-Neto, J.L., Solla-Gullun, J., and Fernandez, P.S., ACS Catal., 2019, vol. 9, no. 6, pp. 5104–5110. https://doi.org/10.1021/acscatal.9b00190

    Article  CAS  Google Scholar 

  62. Zalineeva, A., Baranton, S., and Coutanceau, C., Electrochim. Acta, 2015, vol. 176, pp. 705–717. https://doi.org/10.1016/j.electacta.2015.07.073

    Article  CAS  Google Scholar 

  63. Kouame, B.S.R., Baranton, S., Brault, P., Canaff, C., Chamorro-Coral, W., Caillard, A., De Oliveira Vigier, K., and Coutanceau, C., Electrochim. Acta, 2020, vol. 329, ID 135161. https://doi.org/10.1016/j.electacta.2019.135161

    Article  CAS  Google Scholar 

  64. Zheng, W., Li, Y., Tsang, C.S., So, P.K., and Lee, L.Y.S., iScience, 2021, vol. 24, no. 4, ID 102342. https://doi.org/10.1016/j.isci.2021.102342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alaba, P.A., Lee, C.S., Abnisa, F., Aroua, M.K., Cognet, P., Peres, Y., and Daud, W.M.A.W., Rev. Chem. Eng., 2020, vol. 36, pp. 1–34. https://doi.org/10.1515/revce-2019-0013

    Article  CAS  Google Scholar 

  66. Houache, M.S.E., Sandoval, M.G., Safari, R., Gaztañaga, F., Escudero, F., Hernández-Laguna, A., Sainz-Díaz, C.I., Botton, G.A., Jasen, P.V., González, E.A., Juan, A., and Baranova, E.A., J. Catal., 2021, vol. 404, pp. 348–361. https://doi.org/10.1016/j.jcat.2021.10.010

    Article  CAS  Google Scholar 

  67. Houache, M.S.E., Cossar, E., Ntais, S., and Baranova, E.A., J. Power Sources, 2018, vol. 375, pp. 310–319. https://doi.org/10.1016/j.jpowsour.2017.08.089

    Article  CAS  Google Scholar 

  68. Fan, L., Liu, B., Liu, X., Senthilkumar, N., Wang, G., and Wen, Z., Energy Technol., 2021, vol. 9, ID 2000804. https://doi.org/10.1002/ente.202000804

    Article  CAS  Google Scholar 

  69. Ghaith, M.E., El-Nagar, G.A., Abd El-Moghny, M.G., Alalawy, H.H., El-Shakre, M.E., and El-Deab, M.S. Int. J. Hydrog. Energy, 2020, vol. 45, no. 16, pp. 9658–9668. https://doi.org/10.1016/j.ijhydene.2020.01.213

    Article  CAS  Google Scholar 

  70. Sivasakthi, P. and Sangaranarayanan, M.V., New J. Chem., 2019, vol. 43, no. 21, pp. 8352–8362. https://doi.org/10.1039/C9NJ01351B

    Article  CAS  Google Scholar 

  71. Houache, M.S.E., Hughes, K., Safari, R., Botton, G.A., and Baranova, E.A., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 13, pp. 15095–15107. https://doi.org/10.1021/acsami.9b22378

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, J. and Shen, Y., J. Electrochem. Soc., 2021, vol. 168, no. 8, ID 084510. https://doi.org/10.1149/1945-7111/ac1cfd

    Article  CAS  Google Scholar 

  73. Brix, A.C., Morales, D.M., Braun, M., Jambrec, D., Junqueira, J.R.C., Cychy, S., Seisel, S., Masa, J., Muhler, M., Andronescu, C., and Schuhmann, W., ChemElectroChem., 2021, vol. 8, no. 12, pp. 2336–2342. https://doi.org/10.1002/celc.202100739

    Article  CAS  Google Scholar 

  74. Rahmani, K. and Habibi, B., Chem. Select., 2020, vol. 5, no. 26, pp. 7990–8001. https://doi.org/10.1002/slct.202001561

    Article  CAS  Google Scholar 

  75. Wu, G., Dong, X., Mao, J., Li, G., Zhu, C., Li, S., Chen, A., Feng, G., Song, Y., Chen, W., and Wei, W., Chem. Eng. J., 2023, vol. 468, ID 143640. https://doi.org/10.1016/j.cej.2023.143640

    Article  CAS  Google Scholar 

  76. Sun, S., Sun, L., Xi, S., Du, Y., Prathap, M.U.A., Wang, Z., and Xu, Z.J., Electrochim. Acta, 2017, vol. 228, pp. 183–194. https://doi.org/10.1016/j.electacta.2017.01.086

    Article  CAS  Google Scholar 

  77. Alaba, P.A., Lee, C.S., Abnisa, F., Aroua, M.K., Abakr, Y.A., Ibrahim, M.D., Cognet, P., Pérèsi, Y., and Daud, W.M.W., Diam. Relat. Mater., 2020, vol. 101, ID 107626. https://doi.org/10.1016/j.diamond.2019.107626

    Article  CAS  Google Scholar 

  78. Er, O.F., Caglar, A., and Kivrak, H., Mater. Chem. Phys., 2020, vol. 254, ID 123318. https://doi.org/10.1016/j.matchemphys.2020.123318

    Article  CAS  Google Scholar 

  79. Cao, M., Cao, H., Meng, W., Wang, Q., Bi, Y., Liang, X., Yang, H., Zhang, L., Lang, M.F., and Sun, J., Int. J. Hydrog. Energy, 2021, vol. 46, no. 56, pp. 28527–28536. https://doi.org/10.1016/j.ijhydene.2021.06.089

    Article  CAS  Google Scholar 

  80. Chai, D., Zhang, X., Chan, S.H., and Li, G., J. Taiwan Inst. Chem. Eng., 2019, vol. 95, pp. 139–146. https://doi.org/10.1016/j.jtice.2018.10.009

    Article  CAS  Google Scholar 

  81. Antolini, E., Sustain. Energy Fuels, 2021, vol. 5, pp. 5038–5060. https://doi.org/10.1039/D1SE00727K

    Article  CAS  Google Scholar 

  82. Rafaideen, T., Baranton, S., and Coutanceau, C., Appl. Catal. B: Environmental, 2019, vol. 243, pp. 641–656. https://doi.org/10.1016/j.apcatb.2018.11.006

    Article  CAS  Google Scholar 

  83. Wu, Y.S., Wang, T.P., Chen, P.Y., and Lee, C.L., Appl. Surf. Sci., 2022, vol. 578, ID 152060. https://doi.org/10.1016/j.apsusc.2021.152060

    Article  CAS  Google Scholar 

  84. Wang, T.P., Tsou, P.Y., and Lee, C.L., Int. J. Energy Res., 2022, vol. 46, pp. 8491–8502. https://doi.org/10.1002/er.7710

    Article  CAS  Google Scholar 

  85. Escalona-Villalpando, R.A., Gurrola, M.P., Trejo, G., Guerra-Balcázar, M., Ledesma-García, J., and Arriaga, L.G., J. Electroanal. Chem., 2018, vol. 816, pp. 92–98. https://doi.org/10.1016/j.jelechem.2018.03.037

    Article  CAS  Google Scholar 

  86. Ostervold, L., Bakovic, S.I.P., Hestekin, J., and Greenlee, L.F., RSC Adv., 2021, vol. 11, pp. 31208–31218. https://doi.org/10.1039/D1RA06737K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Er, O.F. and Kivrak, H., Energy Storage, 2021, vol. 3, no. 6, pp. 1–12. https://doi.org/10.1002/est2.271

    Article  CAS  Google Scholar 

  88. Neto, N.F.A., Pereira, A.L.J., Leite, D.M.G., da Silva, J.H.D., and da Silva Pelissari, M.R., Ionics, 2021, vol. 27, pp. 1597–1609. https://doi.org/10.1007/s11581-021-03933-1

    Article  CAS  Google Scholar 

  89. Hamad, A.R., Calis, H., Caglar, A., Kivrak, H., and Kivrak, A., Int. J. Energy Res., 2022, vol. 46, pp. 1659–1671. https://doi.org/10.1002/er.7282

    Article  CAS  Google Scholar 

  90. Ozok, O., Kavak, E., Er, O.F., Kivrak, H., and Kivrak, A., Int. J. Hydrog. Energy, 2020, vol. 45, no. 53, pp. 28706–28715. https://doi.org/10.1016/j.ijhydene.2020.07.195

    Article  CAS  Google Scholar 

  91. Trasatti, S. and Petrii, O.A., J. Electroanal. Chem., 1992, vol. 321, pp. 353–376. https://doi.org/10.1016/0022-0728(92)80162-W

    Article  Google Scholar 

  92. Yang, G., Jiao, Y., Yan, H., Xie, Y., Wu, A., Dong, X., Guo, D., Tian, C., and Fu, H., Adv. Mater., 2020, vol. 32, no. 17, ID 2000455. https://doi.org/10.1002/adma.202000455

    Article  CAS  Google Scholar 

  93. Lu, Y., Dong, C.L., Huang, Y.C., Zou, Y., Liu, Y., Li, Y., Zhang, N., Chen, W., Zhou, L., Lin, H., and Wang, S., Sci. China Chem., 2020, vol. 63, pp. 980–986. https://doi.org/10.1007/s11426-020-9749-8

    Article  CAS  Google Scholar 

  94. Wang, W. and Wang, M., Catal. Sci. Technol., 2021, vol. 11, pp. 7326–7330. https://doi.org/10.1039/D1CY00786F

    Article  CAS  Google Scholar 

  95. Gouda, L., Sévery, L., Moehl, T., Mas-Marzá, E., Adams, P., Fabregat-Santiago, F., and Tilley, S.D., Green Chem., 2021, vol. 23, pp. 8061–8068. https://doi.org/10.1039/D1GC02031E

    Article  CAS  Google Scholar 

  96. Leont’eva, D.V. and Smirnova, N.V., Izv. Vuzov. Severo Kavkaz. Region. Estestv. Nauki, 2015, no. 4, pp. 91–95. https://doi.org/10.18522/0321-3005-2015-4-91-95

    Article  CAS  Google Scholar 

  97. Cai, M., Zhang, Y., Zhao, Y., Liu, Q., Li, Y., and Li, G., J. Mater. Chem. A, 2020, vol. 8, pp. 20386–20392. https://doi.org/10.1039/D0TA07793C

    Article  CAS  Google Scholar 

  98. Vuyyuru, K.R. and Strasser, P., Catal. Today, 2012, vol. 195, no. 1, pp. 144–154. https://doi.org/10.1016/j.cattod.2012.05.008

    Article  CAS  Google Scholar 

  99. Kubota, S.R. and Choi, K.S., ChemSusChem., 2018, vol. 11, no. 13, pp. 2138–2145. https://doi.org/10.1002/cssc.201800532

    Article  CAS  PubMed  Google Scholar 

  100. Chadderdon, D.J., Xin, L., Qi, J., Qiu, Y., Krishna, P., Moreb, K.L., and Li, W., Green Chem., 2014, vol. 16, pp. 3778–3786. https://doi.org/10.1039/C4GC00401A

    Article  CAS  Google Scholar 

  101. Lu, Y., Dong, C.L., Huang, Y.C., Zou, Y., Liu, Z., Liu, Y., Li, Y., He, N., Shi, J., and Wang, S. Angew. Chem. Int. Ed., 2020, vol. 59, no. 43, pp. 19215–19221. https://doi.org/10.1002/anie.202007767

    Article  CAS  Google Scholar 

  102. Zhong, R., Wang, Q., Du, L., Pu, Y., Ye, S., Gu, M., Zhang, Z.C., and Huang, L., Appl. Surf. Sci., 2022, vol. 584, ID 152553. https://doi.org/10.1016/j.apsusc.2022.152553

    Article  CAS  Google Scholar 

  103. Lu, Y., Liu, T., Dong, C.L., Yang, C., Zhou, L., Huang, Y.C., Li, Y., Zhou, B., Zou, Y., and Wang, S., Adv. Mater., 2022, vol. 34, no. 2, ID 2107185. https://doi.org/10.1002/adma.202107185

    Article  CAS  Google Scholar 

  104. Song, Y., Li, Z., Fan, K., Ren, Z., Xie, W., Yang, Y., Shao, M., and Wei, M., Appl. Catal. B: Environmental, 2021, vol. 299, ID 120669. https://doi.org/10.1016/j.apcatb.2021.120669

    Article  CAS  Google Scholar 

  105. Le, T.H.H., Vo, T.G., and Chiang, C.Y., J. Catal., 2021, vol. 404, pp. 560–569. https://doi.org/10.1016/j.jcat.2021.10.032

    Article  CAS  Google Scholar 

  106. Wang, H., Li, C., An, J., Zhuang, Y., and Tao, S., J. Mater. Chem. A, 2021, vol. 9, pp. 18421–18430. https://doi.org/10.1039/D1TA05425B

    Article  CAS  Google Scholar 

  107. Gu, K., Wang, D., Xie, C., Wang, T., Huang, G., Liu, Y., Zou, Y., Tao, L., and Wang, S., Angew. Chem. Int. Ed., 2021, vol. 60, no. 37, pp. 20253–20258. https://doi.org/10.1002/anie.202107390

    Article  Google Scholar 

  108. Lie, W.H., Deng, C., Yang, Y., Tsounis, C., Wu, K.H., Hioe, M.V.C., Bedford, N.M., and Wang, D.W., Green Chem., 2021, vol. 23, pp. 4333–4337. https://doi.org/10.1039/D1GC01208H

    Article  Google Scholar 

  109. Ge, R., Wang, Y., Li, Z., Xu, M., Xu,, S.M., Zhou, H., Ji, K., Chen, F., Zhou, J., and Duan, H., Angew. Chem. Int. Ed., 2022, vol. 61, no. 19, pp. 1–8. https://doi.org/10.1002/anie.202200211

    Article  CAS  Google Scholar 

  110. Cai, M., Ding, S., Gibbons, B., Yang, X., Kessinger, M.C., and Morris, A.J., Chem. Commun., 2020, vol. 56, pp. 14361–14364. https://doi.org/10.1039/D0CC02206C

    Article  CAS  Google Scholar 

  111. Lu, X., Wu, K.H., Zhang, B., Chen, J., Li, F., Su, B.J., Yan, P., Chen, J.M., and Qi, W., Angew. Chem. Int. Ed., 2021, vol. 60, no. 26, pp. 14528–14535. https://doi.org/10.1002/anie.202102359

    Article  CAS  Google Scholar 

  112. Zhang, N., Zou, Y., Tao, L., Chen, W., Zhou, L., Liu, Z., Zhou, B., Huang, G., Lin, H., and Wang, S., Angew. Chem. Int. Ed., 2019, vol. 131, no. 44, pp. 16042–16050. https://doi.org/10.1002/ange.201908722

    Article  Google Scholar 

  113. Lu, L., Wen, C., Wang, H., Li, Y., Wu, J., and Wang, C., J. Catal., 2023, vol. 424, pp. 1–8. https://doi.org/10.1016/j.jcat.2023.05.001

    Article  CAS  Google Scholar 

  114. Grabowski, G., Lewkowski, J., and Skowronski, R., Electrochim. Acta, 1991, vol. 36, no. 13, pp. 1995. https://doi.org/10.1016/0013-4686(91)85084-K

    Article  CAS  Google Scholar 

  115. Heidary, N. and Kornienko, N., Chem. Sci., 2020, vol. 11, pp. 1798–1806. https://doi.org/10.1039/D0SC00136H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Roman, A.M., Hasse, J.C., Will Medlin, J., and Holewinski, A., ACS Catal., 2019, vol. 9, no. 11, pp. 10305–10316. https://doi.org/10.1021/acscatal.9b02656

    Article  CAS  Google Scholar 

  117. Hasse, J.C., Agrawal, N., Janik, M.J., and Holewinski, A., J. Phys. Chem. C, 2022, vol. 126, no. 16, pp. 7054–7065. https://doi.org/10.1021/acs.jpcc.2c01259

    Article  CAS  Google Scholar 

  118. Parpot, P., Bettencourt, A.P., Chamoulaud, G., Kokoh, K.B., and Belgsir, E.M., Electrochim. Acta, 2004, vol. 49, no. 3, pp. 397–403. https://doi.org/10.1016/j.electacta.2003.08.021

    Article  CAS  Google Scholar 

  119. Liu, B., Xu, S., Zhang, M., Li, X., Decarolis, D., Liu, Y., Wang, Y., Gibson, E.K., Catlow, C.R.A., and Yan, K., Green Chem., 2021, vol. 23, pp. 4034–4043. https://doi.org/10.1039/D1GC00901J

    Article  CAS  Google Scholar 

  120. You, B., Liu, X., Jiang, N., and Sun, Y., J. Am. Chem. Soc., 2016, vol. 138, no. 41, pp. 13639–13646. https://doi.org/10.1021/jacs.6b07127

    Article  CAS  PubMed  Google Scholar 

  121. Begildayeva, T., Theerthagiri, J., Lee, S.J., Min, A., Kim, G.A., Manickam, S., and Choi, M.Y., Energy Environ. Mater., 2023, vol. 0, ID e12563. https://doi.org/10.1002/eem2.12563

    Article  CAS  Google Scholar 

  122. Gong, L., Agrawal, N., Roman, A., Holewinski, A., and Janik, M.J., J. Catal., 2019, vol. 373, pp. 322–335. https://doi.org/10.1016/j.jcat.2019.04.012

    Article  CAS  Google Scholar 

  123. Román, A.M., Agrawal, N., Hasse, J.C., Janik, M.J., Medlin, J.W., and Holewinski, A., J. Catal., 2020, vol. 391, pp. 327–335. https://doi.org/10.1016/j.jcat.2020.08.034

    Article  CAS  Google Scholar 

  124. Bharath, G. and Banat, F., ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 21, pp. 24643–24653. https://doi.org/10.1021/acsami.1c02231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bharath, G., Rambabu, K., Hai, A., Ponpandian, N., Schmidt, J.E., Dionysiou, D.D., Haija, M.A., and Banat, F., Appl. Catal. B: Environmental, 2021, vol. 298, ID 120520. https://doi.org/10.1016/j.apcatb.2021.120520

    Article  CAS  Google Scholar 

  126. Wang, T., Huang, Z., Liu, T., Tao, L., Tian, J., Gu, K., Wei, X., Zhou, P., Gan, L., Du, S., Zou, Y., Chen, R., Li, Y., Fu, X.Z., and Wang, S., Angew. Chem. Int. Ed., 2022, vol. 61, no. 12, pp. 1–5. https://doi.org/10.1002/anie.202115636

    Article  CAS  Google Scholar 

  127. Huang, X., Song, J., Hua, M., Chen, B., Xie, Z., Liu, H., Zhang, Z., Meng, Q., and Han, B., Chem. Sci., 2021, vol. 12, pp. 6342–6349. https://doi.org/10.1039/D1SC01231B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ristic, N.M., Kotorcevic, M., Lacnjevac, C.M., Jokic, A.M., and Jaksic, M.M., Electrochim. Acta, 2000, vol. 45, no. 18, pp. 2973–2989. https://doi.org/10.1016/S0013-4686(00)00376-5

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of a state assignment from the Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

The authors declare that there are no conflicts of interest to disclose in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 123–146, February, 2023 https://doi.org/10.31857/S0044461823020019

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherstyuk, O.V., Kuznetsov, A.N. & Kozlov, D.V. Сatalysts for Electrooxidation of Biomass Processing Products. Russ J Appl Chem 96, 123–142 (2023). https://doi.org/10.1134/S1070427223020016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223020016

Keywords:

Navigation