Skip to main content
Log in

Analysis of the Hydrodynamics of Swirling Flows in Direct-Flow Cyclones

  • Specific Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A mathematical model is presented that describes the movement of gas in a direct-flow cyclone. The equations of motion of the gas phase were solved and profiles for the tangential and axial components of gas velocity were derived based on them. The results obtained are compared with the results of numerical simulation. The latter was carried out in the FlowVision software using the SST turbulence model. Via numerical calculations the change in the tangential and axial components of the gas velocity was determined at distances of 110, 150, 200, and 250 mm from the plate turbulator, or cyclone swirler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Cristobal, C. and Gil, A., Progress Energy Combust, 2007, vol. 33, no. 5, pp. 409–452. https://doi.org/10.1016/j.pecs.2007.02.001

    Article  CAS  Google Scholar 

  2. Peng, W., Hoffmann A.C., Dries, H.W.-A., Regelink, M.A., and Stein, L.E., Chem. Eng. Sci., 2005, vol. 60, pp. 6919–692828. https://doi.org/10.1016/j.ces.2005.06.009

    Article  CAS  Google Scholar 

  3. Biegger, C., Sotgiu, C., and Weigand, B., Int. J. Therm. Sci., 2015, vol. 96, pp. 319–330. https://doi.org/10.1016/j.ijthermalsci.2014.12.001

    Article  Google Scholar 

  4. Seibold, F. and Weigand, B., Int. J. Heat Fluid Flow, 2021, vol. 90. https://doi.org/10.1016/j.ijheatfluidflow.2021.108806

    Article  Google Scholar 

  5. Bruschewski, M., Grundmann, S., and Schiffer, H.-P., Int. J. Heat Fluid Flow, 2020, vol. 86, ID 108670. https://doi.org/10.1016/j.ijheatfluidflow.2020.108670

    Article  Google Scholar 

  6. Novotny, P., Weigand, B., Marsik, F., Biegger, C., and Tomas, M., J. Phys., 2018, vol. 1045, ID 012031. https://doi.org/10.1088/1742-6596/1045/1/012031

    Article  CAS  Google Scholar 

  7. Tianxing, Z., Alshehhi, M., Khezzar, L., Xia, Y., and Kharoua, N., J. Fluids Eng., 2019, vol. 142, no. 1, ID 011102.

    Article  Google Scholar 

  8. Shilyaev M.I. and Shilyaev A.M., Teplofizika Aeromekhanika, 2003. T. 10, no. 2, pp. 157–170.

    Google Scholar 

  9. Tarasova, L.A., Terekhov, M.A., and Troshkin, O.A., Khim. i Neftegaz. Mashinostroenie, 2004, no. 2, pp. 11–12.

    Google Scholar 

  10. Grundmann, S., Wassermann, F., Lorenz, R., Jung, B., and Tropea, C., Int. J. Heat Fluid Flow, 2012, vol. 37, pp. 51–63. https://doi.org/10.1016/j.ijheatfluidflow.2012.05.003

    Article  Google Scholar 

  11. Huang, L., Deng, S., Chen, Z., Guan, J., and Chen, M., Sep. Purif. Technol., 2018, vol. 194, pp. 470–479. https://doi.org/10.1016/j.seppur.2017.11.066

    Article  CAS  Google Scholar 

  12. Bruschewski, M., Scherhag, C., Schiffer, H.-P., and Grundmann, S., J. Turbomach., 2016, vol. 138, no. 6, ID 061005. https://doi.org/10.1115/1.4032363

    Article  Google Scholar 

  13. Mikheev, N., Saushin, I., Paereliy, A., Kratirov, D., and Levin K., Powder Technol., 2018, vol. 339, pp. 326–333. https://doi.org/10.1016/j.powtec.2018.08.040.

    Article  CAS  Google Scholar 

  14. Turubaev, R.R. and Shvab, A.V., Vestn. Tomsk. Gos. Univ. Matematika Mekhanika, 2017, no. 47, pp. 87–98. https://doi.org/10.17223/19988621/47/9

    Article  Google Scholar 

  15. Nikolaev, A.N. and Khar’kov, V.V., Vestn. Kazan. Tekhnol. Univ., 2016, no. 17, pp. 71–74.

    Google Scholar 

  16. Yu, G., Dong, S., Yang, L., Yan,, D., Dong, K., Wei, Y., and Wang, B., Chem. Eng. Sci., 2021, vol. 236, ID 116537. https://doi.org/10.1016/j.ces.2021.116537

    Article  CAS  Google Scholar 

  17. Li, L., Du, C., Chen, X., Wang, J., and Fan, X., J. Mech. Sci. Technol., 2018, vol. 32, no. 6, pp. 2905–2917. https://doi.org/10.1007/s12206-018-0547-4

    Article  Google Scholar 

  18. Yang, C., Jeng, D., Yang, Y.-J., Chen, H.-R., and Gau, C., Exp. Therm. Fluid Sci., 2011, vol. 35, no. 1, pp. 73–81. https://doi.org/10.1016/j.expthermflusci.2010.08.008

    Article  Google Scholar 

  19. You, Y., Seibold, F., Wang, S., Weigand, B., and Gross, U., Int. J. Heat Mass Transf., 2020 V. 159, ID 120088. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120088

    Article  Google Scholar 

  20. Platonov, D.V, Minakov, A.V., Dekterev, A.A., and Sentyabov, A.V., Komp’yuter. Issled. Modelirovanie, 2013, vol. 5, no. 4, pp. 635–648. https://doi.org/10.20537/2076-7633-2013-5-4-635-648

    Article  Google Scholar 

  21. Malikov, Z.M. and Madaliev, M.E., Vestn. Tomsk. Gos. Iniv., 2021, no. 71, pp. 121–138. https://doi.org/10.17223/19988621/71/10

    Article  Google Scholar 

  22. Usmanova, R.R. and Zhernakov, V.S., Vestn. UGATU, 2013, vol. 17, no. 1(54), pp. 63–67.

    Google Scholar 

  23. Narasimha, M., Brennan, M.S., Holtham, P.N., and Napier-Munn, T.J., Miner Eng., 2007, vol. 20, no. 4, pp. 414–426. https://doi.org/10.1016/j.mineng.2006.10.004

    Article  CAS  Google Scholar 

  24. Mousavi, S.M., Ghadimi, B., and Kowsary, F., Int. Commun. Heat Mass Transf., 2018, vol. 90, pp. 34–43. https://doi.org/10.1016/j.icheatmasstransfer.2017.10.012

    Article  Google Scholar 

  25. Biegger, C., Rao, Y. and Weigand, B., Int. J. Heat Fluid Flow, 2018, vol. 73, pp. 174–187. https://doi.org/10.1016/j.ijheatfluidflow.2018.07.011

    Article  Google Scholar 

  26. Volk, A.M., Energetika. Izv. vuzov Energeticheskikh Ob’’edinenii SNG, 2009, no. 3, pp. 77–81.

    Google Scholar 

  27. Chesnokov, Yu.G., Bauman, A.V., and Flisyuk, O.M., Zh. Prikl. Khim., 2006, vol. 79, no. 5, pp. 783–786. https://doi.org/10.1134/S1070427206050144

    Article  CAS  Google Scholar 

  28. Flisiyk, O.M., Martsulevich, N.A., Toptalov, V.S., ChemChemTech., 2021, vol. 64, no. 8, pp. 99–106. https://doi.org/10.6060/ivkkt.20216408.6419

    Article  CAS  Google Scholar 

  29. Bloor, M.I.G. and Ingham, D.B., J. Fluid Mech., 1987, vol. 178, pp. 507–519.

    Article  CAS  Google Scholar 

  30. Gol’dshtik, M.A., Vikhrevye potoki (Vortical Flows), Novosibirsk: Nauka, 1981.

    Google Scholar 

  31. Barber, T.A., J. Fluid Mech., 2017, vol. 828, pp. 708–732. https://doi.org/10.1017/jfm.2017.494

    Article  CAS  Google Scholar 

  32. Majdalani, J., Fluid Dyn. Res., 2012, vol. 44, ID 065506. https://doi.org/10.1088/0169-5983/44/6/065506

    Article  Google Scholar 

Download references

Funding

The research was supported by a grant from the Russian Science Foundation (project 21-79-30029).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: O.M. Flisyuk and V.S. Toptalov; methodology: Yu.G. Chesnokov; verification: I.G. Likhachev and N.A. Martsulevich; formal analysis: O.M. Flisyuk; research: V.S. Toptalov; initial draft preparation of the text: Yu.G. Chesnokov; reviewing and editing the text: N.A. Martsulevich; supervision: I.G. Likhachev.

Corresponding author

Correspondence to V. S. Toptalov.

Ethics declarations

The authors declare that there are no conflicts of interest to disclose in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 112–120, August, 2023 https://doi.org/10.31857/S0044461823010139

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toptalov, V.S., Chesnokov, Y.G., Flisyuk, O.M. et al. Analysis of the Hydrodynamics of Swirling Flows in Direct-Flow Cyclones. Russ J Appl Chem 96, 99–107 (2023). https://doi.org/10.1134/S1070427223010135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223010135

Keywords:

Navigation