Skip to main content
Log in

Formation of Formic Acid and Its Esters in Oxidation of Fatty Acid Methyl Esters

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Pathways of formation of low-boiling products in the course of oxidation of fatty acid methyl esters with atmospheric oxygen in a bubbling column were studied. These products are continuously removed from the reactor under the action of high temperature at continuous air supply. Two kinds of feedstock with different content of esters of mono- and diunsaturated fatty acids (methyl esters of fatty acids of olive and sunflower oils) were used in the study. Along with acids and aldehydes forming the major fraction of low-boiling products, compounds containing ester groups were detected. The 1Н and 13С NMR analysis revealed the presence of formic acid esters in the samples. The formate formation mechanism involving the Baeyer–Villiger reaction of aldehydes with hydroperoxides in the reaction volume was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Horvat, R.J., Mcfadden, W.H., Ng, H., Lee, A., Fuller, G., and Applewhite, T.H., J. Am. Oil Chem. Soc., 1969, vol. 46, no. 6, pp. 273–276. https://doi.org/10.1007/bf02545002

    Article  CAS  Google Scholar 

  2. May, W.A., Peterson, R.J., and Chang, S.S., J. Am. Oil Chem. Soc., 1983, vol. 60, no. 5, pp. 990–995. https://doi.org/10.1007/bf02660214

    Article  CAS  Google Scholar 

  3. Chang, S.S., Peterson, R.J., and Ho, C.T., J. Am. Oil Chem. Soc., 1978, vol. 55, no. 10, pp. 718–727. https://doi.org/10.1007/bf02665369

    Article  CAS  PubMed  Google Scholar 

  4. Sapunov, V.N., Cherepanova, A.D., Voronov, M.S., Kozlovskiy, R.A., Yudaev, S.A., and Ivashkina, E.N., Russ. J. Appl. Chem., 2020, vol. 93, no. 5, pp. 704–711. https://doi.org/10.1134/s1070427220050110

    Article  CAS  Google Scholar 

  5. Cherepanova, A., Savel’ev, E., Alieva, L., Kuznetsova, I., and Sapunov, V., J. Am. Oil Chem. Soc., 2020, vol. 97, no. 11, pp. 1265–1272. https://doi.org/10.1002/aocs.12415

    Article  CAS  Google Scholar 

  6. Guillén, M.D. and Ruiz, A., Eur. J. Lipid Sci. Technol., 2008, vol. 110, no. 1, pp. 52–60. https://doi.org/10.1002/ejlt.200600299

    Article  CAS  Google Scholar 

  7. Sacchi, R., Falcigno, L., Paduano, A., Ambrosino, M.L., Savarese, M., Degiulio, B., Addeo, F., and Paolillo, L., Riv. Ital. Sostanze Grasse, 2006, vol. 82, pp. 257–263.

    Google Scholar 

  8. Alexandri, E., Ahmed, R., Siddiqui, H., Choudhary, M., Tsiafoulis, C., and Gerothanassis, I., Molecules, 2017, vol. 22, no. 10, pp. 1663–1690. https://doi.org/10.3390/molecules22101663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guillén, M.D. and Goicoechea, E., Crit. Rev. Food Sci. Nutr., 2008, vol. 48, no. 2, pp. 119–136. https://doi.org/10.1080/10408390601177613

    Article  CAS  PubMed  Google Scholar 

  10. Frankel, E.N., Lipid Oxidation, Amsterdam: Elsevier, 1980, pp. 89–90.

    Google Scholar 

  11. Moumtaz, S., Percival, B.C., Parmar, D., Grootveld, K.L., Jansson, P., and Grootveld, M., Sci. Rep., 2019, vol. 9, no. 1, pp. 4125–4146. https://doi.org/10.1038/s41598-019-39767-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pretsch, E., Bühlmann, P., and Affolter, C., Structure Determination of Organic Compounds: Tables of Spectral Data, Berlin: Springer, 2000.

    Book  Google Scholar 

  13. Frankel, E.N., J. Am. Oil Chem. Soc., 1985, pp. 1–34.

  14. Flitsch, S., Neu, P.M., Schober, S., Kienzl, N., Ullmann, J., and Mittelbach, M., Energy Fuels, 2014, vol. 28, no. 9, pp. 5849–5856. https://doi.org/10.1021/ef501118r

    Article  CAS  Google Scholar 

  15. Perkel, А.L., Voronina, S.G., and Borkina, G.G., Russ. Chem. Bull., 2018, vol. 67, no. 5, pp. 779–786. https://doi.org/10.1007/s11172-018-2137-0

    Article  CAS  Google Scholar 

  16. Pikh, Z., Nebesnyi, R., Ivasiv, V., Pich, A., and Vynnytska, S., Chem. Chem. Technol., 2016, vol. 10, no. 4, pp. 401–411. https://doi.org/10.23939/chcht10.04.401

    Article  Google Scholar 

  17. Lehtinen, C. and Brunow, G., Org. Process Res. Dev., 2000, vol. 4, pp. 544–549. https://doi.org/10.1021/op000045k

    Article  CAS  Google Scholar 

  18. Hassall, C.H., Org. React., 2011, vol. 9, pp. 73–106. https://doi.org/10.1002/0471264180.or009.03

    Article  Google Scholar 

  19. Yaremenko, I.A., Vil’, V.A., Demchuk, D.V., and Terent’ev, A.O., Beilstein J. Org. Chem., 2016, vol. 12, pp. 1647–1748. https://doi.org/10.3762/bjoc.12.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gol’dman, O.V., Perkel’, A.L., Smirnova, T.Ya., and Freidin, B.G., Zh. Prikl. Khim., 1984, vol. 57, no. 8, pp. 1830–1835.

    Google Scholar 

  21. Krow, G.R., Org. React., 1993, vol. 43, pp. 251–798. https://doi.org/10.1002/0471264180.or043.03

    Article  CAS  Google Scholar 

  22. Terenin, A.N., Fotonika molekul krasitelei i rodstvennykh organicheskikh soedinenii (Photonics of Molecules of Dyes and Related Organic Compounds), Leningrad: Nauka, 1967, pp. 55–60.

    Google Scholar 

  23. Garland, R.M., Elrod, M.J., Kincaid, K., Beaver, M.R., Jimenez, J.L., and Tolbert, M.A., Atmos. Environ., 2006, vol. 40, no. 35, pp. 6863–6878. https://doi.org/10.1016/j.atmosenv.2006.07.009

    Article  CAS  Google Scholar 

  24. Abreu, I., Da Costa, N.C., van Es, A., Kim, J.-A., Parasar, U., and Poulsen, M.L., J. Food Sci., 2017, vol. 82, no. 12, pp. 2805–2815. https://doi.org/10.1111/1750-3841.13948

    Article  CAS  PubMed  Google Scholar 

  25. Souza, P.T., Silva, W.L.G., Meirelles, A.J.A., and Tubino, M., Fuel, 2021, vol. 289, ID 119943.https://doi.org/10.1016/j.fuel.2020.119943

    Article  Google Scholar 

  26. deMan, J.M. and deMan, L., J. Am. Oil Chem. Soc., 1984, vol. 61, no. 3, pp. 534–536. https://doi.org/10.1007/BF02677024

    Article  CAS  Google Scholar 

  27. Souza, P.T., Ansolin, M., Batista, E.A.C., Meirelles, A.J.A., and Tubino, M., Fuel, 2017, vol. 199, no. 1, pp. 239–247. https://doi.org/10.1016/j.fuel.2017.02.093

    Article  CAS  Google Scholar 

  28. Loury, M., Lipids, 1972, vol. 7, pp. 671–675. https://doi.org/10.1007/bf02533075

    Article  CAS  Google Scholar 

  29. Kotel’nikova, T.S., Voronina, S.G., and Perkel’, A.L., Russ. J. Appl. Chem., 2006, vol. 79, no. 3, pp. 416–420. https://doi.org/10.1134/s1070427206030165

    Article  Google Scholar 

  30. deMan, J.M., Tie, F., and deMan, L., J. Am. Oil Chem. Soc., 1987, vol. 64, no. 7, pp. 993–996. https://doi.org/10.1007/bf02542435

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment of the Ministry of Science and Higher Education of the Russian Federation (FSSM-2023-0004). The IR spectra were recorded using the equipment of the Mendeleev Center for Shared Use within the framework of state contract no. 13.TsKP.21.0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Savel’ev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 104–111, August, 2023 https://doi.org/10.31857/S0044461823010127

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savel’ev, E.A., Cherepanova, A.D. & Sapunov, V.N. Formation of Formic Acid and Its Esters in Oxidation of Fatty Acid Methyl Esters. Russ J Appl Chem 96, 91–98 (2023). https://doi.org/10.1134/S1070427223010123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223010123

Keywords:

Navigation