Skip to main content
Log in

Microstructure and Thermal and Rheological Properties of Low-Molecular-Mass Ethylene–Vinyl Acetate Copolymer

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The microstructure of low-molecular-mass ethylene–vinyl acetate copolymers was studied by 1Н and 13С NMR spectroscopy. The vinyl acetate mole fraction, chain branching, and mean lengths of ethylene and vinyl acetate blocks were determined. The thermal properties of ethylene–vinyl acetate copolymers were studied by differential scanning calorimetry and thermogravimetric analysis, and the crystalline characteristics, by X-ray diffraction analysis. The degree of crystallinity of the copolymer decreases with an increase in the fraction of the polar comonomer. Rheological studies show that ethylene–vinyl acetate copolymers at room temperature tend to microphase segregation and form a microphase structural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Alothman, O.Y., Adv. Mater. Sci. Eng., 2012, vol. 2012, pp. 1–10. https://doi.org/10.1155/2012/635693

    Article  CAS  Google Scholar 

  2. Birajdar, R.S. and Chikkali, S.H., Eur. Polym. J., 2021, vol. 143, ID 110183. https://doi.org/10.1016/j.eurpolymj.2020.110183

    Article  CAS  Google Scholar 

  3. Zarrouki, A., Espinosa, E., Boisson, C., and Monteil, V., Macromolecules, 2017, vol. 50, no. 9, pp. 3516–3523. https://doi.org/10.1021/acs.macromol.6b02756

    Article  CAS  Google Scholar 

  4. Aggarwal, S.L. and Sweeting, O.J., Chem. Rev., 1957, vol. 57, no. 4, pp. 665–742. https://doi.org/10.1021/cr50016a004

    Article  CAS  Google Scholar 

  5. Ghiass, M. and Hutchinson, R.A., Polym. React. Eng., 2003, vol. 11, no. 4, pp. 989–1015. https://doi.org/10.1081/PRE-120026882

    Article  CAS  Google Scholar 

  6. Kostyuk, A.V., Smirnova, N.M., Antonov, S.V., and Ilyin, S.O., Polym. Sci., Ser. A, 2021, vol. 63, no. 3, pp. 283–295. https://doi.org/10.1134/S0965545X21030081

    Article  CAS  Google Scholar 

  7. Choi, S.-S. and Chung, Y.Y., Polym. Test., 2020, vol. 90, ID 106706. https://doi.org/10.1016/j.polymertesting.2020.106706

    Article  CAS  Google Scholar 

  8. McKennell, R., Anal. Chem., 1956, vol. 28, no. 11, pp. 1710–1714. https://doi.org/10.1021/ac60119a021

    Article  CAS  Google Scholar 

  9. Demarteau, J., Scholten, P.B.V., Kermagoret, A., Winter, J.D., Meier, M.A.R., Monteil, V., Debuigne, A., and Detrembleur, C., Macromolecules, 2019, vol. 52, no. 22, pp. 9053–9063. https://doi.org/10.1021/acs.macromol.9b01741

    Article  CAS  Google Scholar 

  10. Naga, N., Kikuchi, G., and Toyota, A., Polymer, 2006, vol. 47, no. 17, pp. 6081–6090. https://doi.org/10.1016/j.polymer.2006.06.015

    Article  CAS  Google Scholar 

  11. Ilyin, S.O., Malkin, A.Ya., Kulichikhin, V.G., Denisova, Yu.I., Krentsel, L.B., Shandryuk, G.A., Litmanovich, A.D., Litmanovich, E.A., Bondarenko, G.N., and Kudryavtsev, Ya.V., Macromolecules, 2014, vol. 47, no. 14, pp. 4790–4804. https://doi.org/10.1021/ma5003326

    Article  CAS  Google Scholar 

  12. Gorbacheva, S.N., Yadykova, A.Y., and Ilyin, S.O., Carbohydr. Polym., 2021, vol. 272, ID 118509. https://doi.org/10.1016/j.carbpol.2021.118509

    Article  CAS  PubMed  Google Scholar 

  13. Matsuoka, S., Mechanical relaxation processes in polymers, Handbook of Thermal Analysis and Calorimetry, Cheng, S.Z.D., Ed., Elsevier, 2002, vol. 3, pp. 111–146.

    Article  CAS  Google Scholar 

  14. Gorbacheva, S.N., Yarmush, Y.M., and Ilyin, S.O., Tribol. Int., 2020, vol. 148, ID 106318. https://doi.org/10.1016/j.triboint.2020.106318

    Article  CAS  Google Scholar 

Download references

Funding

Synthesis of the ethylene–vinyl acetate copolymer, determination of its microstructure, and studies of the thermal, crystalline, and rheological properties of the laboratory and commercially available samples were performed within the framework of the government assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (no. FFZN-2022-0005) using the equipment of the Center for Shared Use Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

A.A. Morontsev: synthesis of the ethylene–vinyl acetate copolymer, confirmation of its structure by IR spectroscopy; G.O. Karpov: description of the results of thermal studies; S.O. Ilyin: rheological study of the ethylene–vinyl acetate copolymer samples and description of the results obtained; K.I. Dement’ev: X-ray diffraction analysis of the ethylene–vinyl acetate copolymers and description of the results obtained; M.V. Bermeshev: analysis of the microstructure of ethylene–vinyl acetate copolymers by 1Н and 13С NMR spectroscopy.

Corresponding author

Correspondence to A. A. Morontsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 84–94, August, 2023 https://doi.org/10.31857/S0044461823010103

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morontsev, A.A., Karpov, G.O., Ilyin, S.O. et al. Microstructure and Thermal and Rheological Properties of Low-Molecular-Mass Ethylene–Vinyl Acetate Copolymer. Russ J Appl Chem 96, 73–82 (2023). https://doi.org/10.1134/S107042722301010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722301010X

Keywords:

Navigation