Skip to main content
Log in

Preparation, Structure, and Properties of Chitosan Microtubes

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Procedures were developed for forming hollow cylindrical structures with the wall thickness in the micrometer range (microtubes) from chitosan solutions in citric, lactic, and glycolic acids. The procedures are based on the phase-transfer neutralization induced by the transport of ions (hereinafter, ion-induced reaction), occurring at the liquid–liquid or solid–liquid interface, namely, on the polymer-analogous conversion of the salt form of the polymer to the base form in a NaOH or triethanolamine medium or formation of a water-insoluble polyelectrolyte complex with sodium dodecylbenzenesulfonate. Comparative analysis of the dependences of the morphological, structural, elastoplastic, physicomechanical, and biological properties of the structures on the reaction conditions and kind of the organic acid and neutralizing agent was made. The microtubes prepared from a chitosan solution in glycolic acid by ion-induced neutralization at the solid–liquid interface in a NaOH or triethanolamine medium exhibit the optimum levels of strength and elasticity, comparable with those of a fragment of human carotid artery and xenopericardial patch. The hemo- and biocompatibility and controlled biodegradation of these materials make them promising as analogs of biodegradable blood vessel implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Wang, J. and Zhuang, S., J. Clean. Prod., 2022, vol. 355, ID 31825. https://doi.org/10.1016/j.jclepro.2022.131825

    Article  CAS  Google Scholar 

  2. Rinaudo, M., Prog. Polym. Sci., 2006, vol. 31, no. 7, pp. 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  3. Mudarisova, R.K., Kulish, E.I., Zinatullin, R.M., Tamindarova, N.E., Kolesov, S.V., Khunafin, S.N., and Monakov, Y.B., Russ. J. Appl. Chem., 2006, vol. 79, no. 10, pp. 1718–1720. https://doi.org/10.1134/S107042720610034X

    Article  CAS  Google Scholar 

  4. Li, X., Tang, J., Bao, L., Chen, L., and Hong, F.F., Carbohydr. Polym., 2017, vol. 178, pp. 394–405. https://doi.org/10.1016/j.carbpol.2017.08.120

    Article  CAS  PubMed  Google Scholar 

  5. Yin, K., Divakar, P., and Wegst, U.G.K., Acta Biomater., 2019, vol. 84, pp. 231–241. https://doi.org/10.1016/j.actbio.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  6. Al Rez, M.F., BinObaid, A., Alghosen, A., Mirza, E., Alam, J., Hashem, M., Alsalman, H., Almalak, H.M., Mahmood, A., Moussa, I., and Al-Jassir, F.F., J. Biomater. Tissue Eng., 2017, vol. 7, pp. 427–436. https://doi.org/10.1166/jbt.2017.1593

    Article  Google Scholar 

  7. Podpryadukhin, P.V., Yukina, G.Yu., Suslov, D.N., Dobrovol’skaya, I.P., Ivan’kova, E.N., and Yudin, V.E., Tsitologiya, 2016, vol. 58, no. 10, pp. 771–777.

    Google Scholar 

  8. Badhe, R.V., Bijukumar, D., Chejara, D.R., Mabrouk, M., Choonara, Y.E., Kumar, P., du Toit, L.C., Kondiah, P.P.D., and Pillay, V., Carbohydr. Polym., 2017, vol. 157, pp. 1215–1225. https://doi.org/10.1016/j.carbpol.2016.09.095

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, X., Liu, S., Han, Y., Wang, Y., and Lin, Q., J. Biomater. Sci. Polym. Ed., 2021, vol. 32, no. 14, pp. 1849–1864. https://doi.org/10.1080/09205063.2021.1946460

    Article  CAS  PubMed  Google Scholar 

  10. Macêdo, M.D.M., de Lucena, B.M., de Cerqueira, G.R.C., de Sousa, W.J.B., Pedrosa, T.C., Barbosa, R.C., de Azevedo, A.C.S., de Souza, M.F., de Oliveira, D.K.M., and Fook, M.V.L., Res. Soc. Develop., 2021, vol. 10, no. 4, e25610414031. https://doi.org/10.33448/rsd-v10i4.14031

    Article  Google Scholar 

  11. Neufurth, M., Wang, X., Tolba, E., Dorweiler, B., Schröder, H.C., Link, T., Diehl-Seifert, B., and Muller, W.E.G., PLoS ONE, 2015, vol. 10, no. 7, e0133632. https://doi.org/10.1371/journal.pone.0133632

    Article  PubMed  PubMed Central  Google Scholar 

  12. Beda, A., Yamada, H., Egunov, A., Ghimbeu, C.M., Malval, J.P., Saito, Y., and Luchnikov, V., J. Mater. Sci., 2019, vol. 54, no. 16, pp. 11345–11356. https://doi.org/10.1007/s10853-019-03675-6

    Article  CAS  Google Scholar 

  13. Lugovitskaya, T.N., Shipovskaya, A.B., Shmakov, S.L., and Shipenok, X.M., Carbohydr. Polym., 2022, vol. 277, ID 118773. https://doi.org/10.1016/j.carbpol.2021.118773

    Article  CAS  PubMed  Google Scholar 

  14. Shipovskaya, A.B., Malinkina, O.N., Gegel, N.O., Zudina, I.V., and Lugovitskaya, T.N., Russ. Chem. Bull., 2021, vol. 70, no. 9, pp. 1765–1774. https://doi.org/10.1007/s11172-021-3281-5

    Article  CAS  Google Scholar 

  15. Babicheva, T.S., Konduktorova, A.A., Shmakov, S.L., and Shipovskaya, A.B., J. Phys. Chem. B, 2020, vol. 124, no. 41, pp. 9255–9266. https://doi.org/10.1021/acs.jpcb.0c07173

    Article  CAS  PubMed  Google Scholar 

  16. Qiao, C., Ma, X., Wang, X., and Liu, L., LWT, 2021, vol. 135, ID 109984. https://doi.org/10.1016/j.lwt.2020.109984

    Article  CAS  Google Scholar 

  17. Melro, E., Antunes, F.E., da Silva, G.J., Cruz, I., Ramos, P.E., Carvalho, F., and Alves, L., Polymers, 2021, vol. 13, no. 1, ID 1. https://doi.org/10.3390/polym13010001

    Article  CAS  Google Scholar 

  18. Nie, J., Lu, W., Ma, J., Yang, L., Wang, Z., Qin, A., and Hu, Q., Sci. Rep., 2015, vol. 5, no. 1, pp. 1–7. https://doi.org/10.1038/srep07635

    Article  CAS  Google Scholar 

  19. Li, B., Gao, Y., Feng, Y., Ma, B., Zhu, R., and Zhou, Y., J. Biomater. Sci. Polym. Ed., 2011, vol. 22, no. 17, pp. 2295–2304. https://doi.org/10.1163/092050610X538425

    Article  CAS  PubMed  Google Scholar 

  20. Babak, V.G., Merkovich, E.A., Galbraikh, L.S., Shtykova, E.V., and Rinaudo, M., Mendeleev Commun., 2000, vol. 10, no. 3, pp. 94–95. https://doi.org/10.1070/MC2000v010n03ABEH001227

    Article  Google Scholar 

  21. Bazunova, M.V., Mustakimov, R.A., and Bakirova, E.R., Russ. J. Appl. Chem., 2022, vol. 95, no. 1, pp. 46–52. https://doi.org/10.31857/S0044461822010054

    Article  CAS  Google Scholar 

  22. Gegel, N.O., Shipovskaya, A.B., Vdovykh, L.S., and Babicheva, T.S., J. Soft Matter, 2014, vol. 2014, ID 863096. https://doi.org/10.1155/2014/863096

    Article  Google Scholar 

  23. Golyadkina, A.A., Ivanov, D.V., Kirillova, I.V., Kossovich, E.L., Pavlova, O.E., Polienko, A.V., and Safonov, R.A., Biomekhanika sonnoi arterii (Biomechanics of Carotid Artery), Saratov: Saratovskii Istochnik, 2015, p. 70.

    Google Scholar 

  24. Ageev, E.P., Vikhoreva, G.A., Zotkin, M.A., Matushkina, N.N., Gerasimov, V.I., Zezin, S.B., and Obolonkova, E.S., Polym. Sci., Ser. A, 2004, vol. 46, no. 12, pp. 1245–1250. https://doi.org/10.1155/2014/863096

    Article  Google Scholar 

  25. Shipovskaya, A.B., Shmakov, S.L., and Gegel, N.O., Carbohydr. Polym., 2019, vol. 206, pp. 476–486. https://doi.org/10.1016/j.carbpol.2018.11.026

    Article  CAS  PubMed  Google Scholar 

  26. Zhankalova, Z.M., Med. Ekol., 2008, vol. 48, no. 3, pp. 31–33. https://qmu.edu.kz/media/qmudoc/Journal3-08.pdf

  27. Zhang, L., Dou, S., Li, Y., Yuan, Y., Ji, Y., Wang, Y., and Yang, Y., Mater. Sci. Eng., Part C, 2013, vol. 33, no. 5, pp. 2626–2631. https://doi.org/10.1016/j.msec.2013.02.024

    Article  CAS  Google Scholar 

  28. Kulish, E.I., Chernova, V.V., Volodina, V.P., and Kolesov, S.V., Vestn. Bashkirsk. Univ., 2008, vol. 13, no. 1, pp. 23–26. http://qmu.edu.kz/media/qmudoc/Journal3-08.pdf

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center for Shared Use “Physicochemical Methods of Investigation and Analysis of Substances and Materials” at the Chernyshevsky Saratov National Research State University for the analysis of microtube samples by scanning microscopy and X-ray diffraction.

Funding

The study was financially supported within the framework of the government assignment of the Ministry of Science and Higher Education of the Russian Federation in the field of research no. 4.1212.2014/K, by the Foundation for Assistance to Small Innovative Enterprises (project no. 4276GU1/2014), and by the Russian Foundation for Basic Research (project no. 16-33-00953).

Author information

Authors and Affiliations

Authors

Contributions

A.B. Shipovskaya: formulation and substantiation of the goals of the study; A.B. Shipovskaya, N.O. Gegel, and T.S. Babicheva: development of the experiment plan; N.O. Gegel and T.S. Babicheva: preparation of chitosan microtubes; N.O. Gegel, T.S. Babicheva, and A.A. Golyadkina: study of the physicomechanical properties of the microtubes; A.A. Golyadkina: evaluation of the physicomechanical properties of the xenopericardial patch and a fragment of the human carotid artery; T.S. Babicheva: study of the hemocompatibility of the microtubular substrates; N.O. Gegel: study of the cytotoxicity and biocompatibility of the microtubes; A.B. Shipovskaya and N.O. Gegel: participation in writing the paper.

Corresponding author

Correspondence to N. O. Gegel.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 69–83, August, 2023 https://doi.org/10.31857/S0044461823010097

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipovskaya, A.B., Gegel, N.O., Babicheva, T.S. et al. Preparation, Structure, and Properties of Chitosan Microtubes. Russ J Appl Chem 96, 59–72 (2023). https://doi.org/10.1134/S1070427223010093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223010093

Keywords:

Navigation