Skip to main content
Log in

Electrochemical Determination of Streptomycin on an Electrode Modified with a Composite of Graphene Oxide and Gold–Nickel Binary System

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A procedure was suggested for voltammetric determination of streptomycin from the catalytic current on a glassy carbon electrode with a composite based on reduced graphene oxide and gold–nickel binary system. The working conditions of the electrode modification (volume of the graphene oxide and chitosan suspension, duration of the electrolytic reduction of immobilized graphene oxide and electrodeposition of the gold–nickel binary system) and the conditions for recording the catalytic current in the flow injection system were determined. The procedure for streptomycin determination in a flow, compared to the determination under stationary conditions, is more sensitive, reproducible, and rapid. The streptomycin detection limit was 0.45 nmol, and the productive capacity of the analysis was 60 samples per hour. The streptomycin determination procedure passed trials in analysis of cow milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Navashin, S.M., Fomina, I.P., and Sazykin, Yu.O., Antibiotiki gruppy aminoglikozidov (Antibiotics of Aminoglycoside Group), Moscow: Meditsina, 1977.

    Google Scholar 

  2. Kulapina, E.G., Barinova, O.V., Kulapina, O.I., Utts, I.A., and Snesarev, S.V., Antibiot. Khimioter., 2009, vol. 54, nos. 9–10, pp. 53–60. EDN: RWZYIN

    CAS  PubMed  Google Scholar 

  3. Leech, D., Wang, J., and Smyth, M.R., Analyst, 1990, vol. 115, no. 11, pp. 1447–1450. https://doi.org/10.1039/an9901501447

    Article  CAS  PubMed  Google Scholar 

  4. Akbarzadeh, S., Khajesharifi, H., and Thompson, M., Biosensors, 2020, vol. 10, no. 3, ID 23. https://doi.org/10.3390/bios10030023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wen, Y., Liao, X., Deng, C., Liu, G., Yan, Q., Li, L., and Wang, X., Microchim. Acta, 2017, vol. 184, no. 3, pp. 935–941. https://doi.org/10.1007/s00604-017-2089-3

    Article  CAS  Google Scholar 

  6. Darabdhara, G., Das, M.R., Singh, S.P., Rengan, A.K., Szunerits, S., and Boukherroub, R., Adv. Colloid Interface Sci., 2019, vol. 271, ID 101991. https://doi.org/10.1016/j.cis.2019.101991

    Article  CAS  PubMed  Google Scholar 

  7. Zou, C.E., Zhong, J., Li, S., Wang, H., Wang, J., Yan, B., and Du, Y., J. Electroanal. Chem., 2017, vol. 805, pp. 110–119. https://doi.org/10.1016/j.jelechem.2017.10.020

    Article  CAS  Google Scholar 

  8. Tadayon, F., Vahed, S., and Bagheri, H., Mater. Sci. Eng., 2016, vol. 68, pp. 805–813. https://doi.org/10.1016/j.msec.2016.07.039

    Article  CAS  Google Scholar 

  9. Fedorchuk, V.A., Puchkovskaya, E.S., Anisimova, L.S., and Slepchenko, G.B., J. Anal. Chem., 2005, vol. 60, no. 6, pp. 518–522. https://doi.org/10.1007/s10809-005-0132-8

    Article  CAS  Google Scholar 

  10. Sato, K., Jin, J.Y., Takeuchi, T., Miwa, T., Takekoshi, Y., Kanno, S., and Kawase, S., Talanta, 2001, vol. 53, no. 5, pp. 1037–1044. https://doi.org/10.1016/S0039-9140(00)00596-8

    Article  CAS  PubMed  Google Scholar 

  11. Burke, L.D., Gold Bull., 2004, vol. 37, nos. 1–2, pp. 125–135. https://doi.org/10.1007/BF0321552

    Article  CAS  Google Scholar 

  12. Budnikov, G.K., Maistrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Principles of Modern Electrochemic Analysis), Moscow: Mir, 2003.

    Google Scholar 

Download references

Funding

The study was financially supported by the Program of Strategic Academic Leadership of the Kazan (Volga Region) Federal University.

Author information

Authors and Affiliations

Authors

Contributions

L.G. Shaidarova and G.K. Budnikov: formulation of the goals of the study, choice of investigation objects, development of the measurement procedure; A.A. Pozdnyak and A.V. Gedmina: choice of optimum conditions for immobilization of the Au–Ni–reduced graphene oxide composite, study of the electrocatalytic activity of this composite in streptomycin oxidation, determination of the working conditions for recording the maximal catalytic effect; L.G. Shaidarova, A.A. Pozdnyak, and A.V. Gedmina: interpretation of the results of voltammetric studies; D.A. Murdasova and I.A. Chelnokova: determination of the working conditions for amperometric detection of streptomycin on an Au–Ni–reduced graphene oxide electrode in a flow injection system, interpretation of the results of the flow injection amperometric determination of streptomycin.

Corresponding author

Correspondence to L. G. Shaidarova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 34–42, August, 2023 https://doi.org/10.31857/S004446182301005X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaidarova, L.G., Pozdnyak, A.A., Gedmina, A.V. et al. Electrochemical Determination of Streptomycin on an Electrode Modified with a Composite of Graphene Oxide and Gold–Nickel Binary System. Russ J Appl Chem 96, 27–34 (2023). https://doi.org/10.1134/S1070427223010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223010056

Keywords:

Navigation