Skip to main content
Log in

Synthesis of a Molybdenum-Containing Mo2C/C Composite Material with Functionalized Carbon Nanotubes

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The Mo2C/C composite material was synthesized by the sol-gel method using molybdenum blue dispersions. Carbon nanotubes treated with HCl (acid treatment) and a mixture of H2SO4 and HNO3 (liquid-phase oxidation) were used as the carbon support. Samples of finished supports and composites were characterized by X-ray phase analysis, transmission electron microscopy, infrared spectroscopy, and low temperature nitrogen adsorption to determine phase composition, surface morphology, and porous parameters. It was established that the content of molybdenum carbide in a composite material is affected by the electrical surface properties of carbon nanotubes and molybdenum blue nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Bogdanovskaya, V.A., Radina, M.V., Korchagin, O.V., Kapustina, N.A., and Kazanskii, L.P., Russ. J. Electrochem., 2020, vol. 56, no. 10, pp. 809–820. https://doi.org/10.1134/S1023193520100043

    Article  CAS  Google Scholar 

  2. Ma, R., Zhou, Y., Chen, Y., Li, P., Liu, Q., and Wang, J., Angew. Chem. Int. Ed., 2015, vol. 127, pp. 14936–14940. https://doi.org/10.1002/ange.201506727

    Article  Google Scholar 

  3. Liu, Y., Huang, B., Hu, X., and Xie, Z., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 3702–3710. https://doi.org/10.1016/j.ijhydene.2018.12.096

    Article  CAS  Google Scholar 

  4. Alaba, P., Abbas, A., Huang, J., and Wan Daud, W.M.A., Renew. Sust. Energ. Rev., 2018, vol. 91, pp. 287–300. https://doi.org/10.1016/j.rser.2018.03.106

    Article  CAS  Google Scholar 

  5. Ouyang, T., Ye, Y., Wu, C., Xiao, K., and Liu, Z.-Q., Angew. Chem. Int. Ed., 2019, vol. 58, no. 15, pp. 4923–4928. https://doi.org/10.1002/anie.201814262

    Article  CAS  Google Scholar 

  6. Wang, C., Sun, L., Zhang, F., Wang, X., Sun, Q., Cheng, Y., and Wang, L., Small, 2017, vol. 13, no. 32, pp. 1–11. https://doi.org/10.1002/smll.201701246

    Article  CAS  Google Scholar 

  7. Song, Y.J., Ren, J.T., Yuan, G., Yao, Y., Liu, X., and Yuan, Z.-Y., J. Energy Chem., 2019, vol. 38, pp. 68–77. https://doi.org/10.1016/j.jechem.2019.01.002

    Article  Google Scholar 

  8. Long, D.L., Burkholder, E., and Cronin, L., Chem. Soc. Rev., 2007, vol. 36, pp. 105–121. https://doi.org/10.1039/B502666K

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, Z., Yuan, Z., Li, S., Li, H., Chen, J., Wang, Y., Huang, Q., Karahan, H.E., Henkelman, G., Liao, X., Wei, L., and Chen, Y.., Small, 2019, vol. 15, pp. 1–11. https://doi.org/10.1002/smll.201900358

    Article  CAS  Google Scholar 

  10. Gavrilova, N., Myachina, M., Harlamova, D., and Nazarov, V., Colloids Interfaces, 2020, vol. 4. N 2, ID 24. https://doi.org/10.3390/colloids4020024

    Article  CAS  Google Scholar 

  11. Gavrilova, N., Dyakonov, V., Myachina, M., Nazarov, V., and Skudin, V., Nanomaterials, 2020, vol. 10, no. 10, ID 2053. https://doi.org/10.3390/nano10102053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Myachina, M.A., Polyakova, Y.A., Gavrilova, N.N., Nazarov, V.V., and Kolesnikov, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 6, pp. 895–900. https://doi.org/10.1134/S107042721706009X

    Article  CAS  Google Scholar 

  13. Shulitskii, B.G., Tabulina, L.B., Rusal’skaya, T.G., Shaman, Y.P., Komissarov, I., and Karoza, A.G., Russ. J. Phys. Chem., 2012. V. 86, no. 10, pp. 1595–1601. https://doi.org/10.1134/S0036024412100238

    Article  CAS  Google Scholar 

  14. Bol’shoi khimicheskii spravochnik (Big Chemical Reference Book), Volkov, A.I. and Zharskii, I.M., Eds., Minsk: Sovr. Shkola, 2005.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Studies of the properties of materials (low-temperature nitrogen adsorption and infrared spectroscopy) were carried out at the Center for Collective Use of the Mendeleev University of Chemical Technology of Russia .

Funding

This work was supported by the Russian Science Foundation (grant no. 21-73-00303).

Author information

Authors and Affiliations

Authors

Contributions

M.A. Myachina, N.N. Gavrilova, and V.V. Nazarov: planning of work and setting up experiments; M.A. Myachina: synthesis of Mo2C/carbon nanotubes samples and carrying out adsorption studies; M.A. Myachina, N.N. Gavrilova, and V.A. Dyakonov: conducting research by low-temperature nitrogen adsorption method, infrared spectroscopy, transmission electron microscopy, and X-ray phase analysis. All authors participated in the preparation, discussion and writing of the article text.

Corresponding author

Correspondence to M. A. Myachina.

Ethics declarations

The authors declare that they have no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 12–20, August, 2023 https://doi.org/10.31857/S0044461823010024

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myachina, M.A., Gavrilova, N.N., D’yakonov, V.A. et al. Synthesis of a Molybdenum-Containing Mo2C/C Composite Material with Functionalized Carbon Nanotubes. Russ J Appl Chem 96, 8–15 (2023). https://doi.org/10.1134/S1070427223010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223010020

Keywords:

Navigation