Skip to main content
Log in

Reductive Treatment of δ-MnO2 with Sodium Borohydride: Method for Increasing the Electrode Material Capacitance

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of reductive treatment on the phase composition, morphology, and electrochemical parameters of δ-MnO2 produced by the hydrothermal method from KMnO4 at a temperature of 160°C in the presence of HNO3 was studied. δ-MnO2 processing with 3 M NaBH4 aqueous solution leads to partial reduction of Mn(IV) to Mn(III) and Mn(II). The electrochemical characteristics of the obtained electrode materials were examined by cyclic voltammetry, galvanostatic charge–discharge measurements, and impedance spectroscopy. Reductive treatment increases the specific capacitance of δ-MnO2 in 1 M Na2SO4 up to 204 F g–1 at a current density of 0.1 A g–1, and also reduces diffusion limitations during cycling due to an increase in the specific surface area. The loss of specific capacitance after 2000 charge–discharge cycles does not exceed 2.6%, which confirms the high electrochemical stability of the obtained electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Frackowiak, E., Abbas, Q., and Béguin, F., J. Energy Chem., 2013, vol. 22, no. 2, pp. 226–240. https://doi.org/10.1016/S2095-4956(13)60028-5

    Article  CAS  Google Scholar 

  2. Chernyavina, V.V., Berezhnaya, A.G., Lepeshkin, I.O., and Dyshlovaya, Ya.A., Elektrokhim. Energetika, 2021, vol. 21, no. 3, pp. 156–163. https://doi.org/10.18500/1608-4039-2021-21-3-156-163

    Article  Google Scholar 

  3. Huang, M., Li, F., Dong, F., Zhang, Y.X., Zhang, L.L., J. Mater. Chem. A, 2015, vol. 3, pp. 21380–21423. https://doi.org/10.1039/c5ta05523g

    Article  CAS  Google Scholar 

  4. Yin, B., Zhang, S., Jiang, H., Qu, F., and Wu, X., J. Mater. Chem. A, 2015, vol. 3, pp. 5722–5729. https://doi.org/10.1039/C4TA06943A

    Article  CAS  Google Scholar 

  5. Wang, J.G., Yang, Y., Huang, Z.H., and Kang, F., Electrochim. Acta, 2011, vol. 56, no. 25, pp. 9240–9247. https://doi.org/10.1016/j.electacta.2011.07.140

    Article  CAS  Google Scholar 

  6. Wu, M.S., Appl. Phys. Lett., 2005, vol. 87, no. 15, ID 153102. https://doi.org/10.1063/1.2089169

    Article  CAS  Google Scholar 

  7. Arkhipova, E.A., Ivanov, A.S., Isaikina O.Ya., Novotortsev R.Yu., Stolbov, D.N., Xia, H., and Savilov, S.V., Mater. Today Proc., 2022, vol. 60, pp. 1008–1011. https://doi.org/10.1016/j.matpr.2021.12.408

    Article  CAS  Google Scholar 

  8. Zhai, T., Xie, S., Yu, M., Fang, P., Liang, C., Lu, X., and Tong, Y., Nano Energy, 2014, vol. 8, pp. 255–263. https://doi.org/10.1016/j.nanoen.2014.06.013

    Article  CAS  Google Scholar 

  9. Kumar, J., Jung, H.J., Neiber, R.R., Soomro, R.A., Kwon, Y.J., Hassan, N.U., Shon, M., Lee, J.H., Baek, K., and Cho, K.Y., Int. J. Energy Res., 2022, vol. 46, no. 6, pp. 7055–7081. https://doi.org/10.1002/er.7675

    Article  CAS  Google Scholar 

  10. Sun, Y., Huang, N., Sun, X., Wang, D., Zhang, J., Qiao, S., and Gao, Z., Int. J. Hydrogen Energy, 2017, vol. 42, no. 31, pp. 20016–20025. https://doi.org/10.1016/j.ijhydene.2017.05.234

    Article  CAS  Google Scholar 

  11. Wang, X. and Li, Y., Chem. Eur. J., 2003, vol. 9, no. 1, pp. 300–306. https://doi.org/10.1002/chem.200390024

    Article  PubMed  Google Scholar 

  12. Stranick, M.A., Surf. Sci. Spectra, 1999, vol. 6, no. 1, pp. 31–38. https://doi.org/10.1116/1.1247888

    Article  CAS  Google Scholar 

  13. Stranick, M.A., Surf. Sci. Spectra, 1999, vol. 6, no. 1, pp. 47–54. https://doi.org/10.1116/1.1247889

    Article  CAS  Google Scholar 

  14. Soares, E.A., Paniago R., Carvalho V.E, Lopes, E.L., Abreu, G.J.P., and Pfannes, H.D., Phys. Rev. B, 2006, vol. 73, no. 3, ID 035419. https://doi.org/10.1103/PhysRevB.73.035419

    Article  CAS  Google Scholar 

  15. Beyreuther, E., Grafström, S., Eng, L.M., Thiele, C., and Dörr, K., Phys. Rev. B, 2006, vol. 73, no. 15, ID 155425. https://doi.org/10.1103/PhysRevB.73.155425

    Article  CAS  Google Scholar 

  16. Langell, M.A., Hutchings, C.W., Carson, G.A., and Nassir, M.H., J. Vac. Sci. Technol., 1996, vol. 14, no. 3, pp. 1656–1661. https://doi.org/10.1116/1.580314

    Article  CAS  Google Scholar 

  17. Benhaddad, L., Makhloufi, L., Messaoudi, B., Rahmouni, K., and Takenouti, H., J. Mater. Sci. Technol., 2011, vol. 27, no. 7, pp. 585–593. https://doi.org/10.1016/S1005-0302(11)60112-6

    Article  CAS  Google Scholar 

  18. Xiong, T., Lee, W.S.V., Huang, X., and Xue, J.M., J. Mater. Chem. A, 2017, vol. 5, pp. 12762–12768. https://doi.org/10.1039/c7ta03319b

    Article  CAS  Google Scholar 

  19. Jia, J., Lian, X., Wu, M., Zheng, F., Gao, Y., and Niu, H., J. Mater. Sci., 2021, vol. 56, pp. 3246–3255. https://doi.org/10.1007/s10853-020-05475-9

    Article  CAS  Google Scholar 

  20. Gong, Y., Li, D., Fu, Q., and Pan, C., Prog. Nat. Sci., 2015, vol. 25, no. 5, pp. 379–385. https://doi.org/10.1016/j.pnsc.2015.10.004

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (project no. 21-43-00023). The authors acknowledge support from the Lomonosov Moscow State University Program of Development for providing access to the XPS and TEM facilities.The authors thank D.N. Stolbov for the study of materials by scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

E.A. Arkhipova: conducting electrochemical studies, analysis and processing of experimental data; A.S. Ivanov: conducting electrochemical studies; S.K. Nikolenko: hydrothermal synthesis, reduction modification of materials; K.I. Maslakov: X-ray photoelectron spectroscopy studies and interpretation of experimental data; S.V. Savilov: analysis of materials by X-ray phase analysis and processing of experimental data; S.M. Aldoshin: the concept of work, the formulation of the goals of the study, the selection of experimental conditions.

Corresponding author

Correspondence to E. A. Arkhipova.

Ethics declarations

The authors declare no conflict of interests requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 4–11, August, 2023 https://doi.org/10.31857/S0044461823010012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, E.A., Ivanov, A.S., Nikolenko, S.K. et al. Reductive Treatment of δ-MnO2 with Sodium Borohydride: Method for Increasing the Electrode Material Capacitance. Russ J Appl Chem 96, 1–7 (2023). https://doi.org/10.1134/S1070427223010019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223010019

Keywords:

Navigation