Skip to main content
Log in

Synthesis of CuO–Cu4O3 Composite in Combustion Reactions of Nitrate–Organic Precursors

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A CuO–Cu4O3-based composite was synthesized in the combustion reactions of nitrate–organic precursors using various fuel additives (glycerol, citric acid, ovalbumin, and urea). The resulting powders were examined by X-ray phase analysis, scanning electron microscopy, and low-temperature nitrogen adsorption and tested as components of ceramics and photocatalysts. It was found that a change in the nature of the fuel additive does not lead to a change in the phase composition, but affects the specific surface area of the samples. A regularity between the particle size and the dielectric parameters of the obtained CuO + Cu4O3 was revealed. It was established that all samples have photocatalytic activity towards the dye rhodamine B, and samples with a large specific surface area demonstrate high sorption property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. O’Keeffe, M. and Bovin, J.O., Am. Mineral., 1978, vol. 63, nos. 1–2, pp. 180–185.

    Google Scholar 

  2. Thanuja, J., Nagaraju, G., and Naika, H.R., SN Appl. Sci., 2019, vol. 1, no. 12, pp. 1−12. https://doi.org/10.1007/s42452-019-1556-3

    Article  CAS  Google Scholar 

  3. Kumar, R.V., Mastai, Y., and Gedanken, A., Chem. Mater., 2000, vol. 12, no. 12, pp. 3892–3895. https://doi.org/10.1021/cm0005081

    Article  CAS  Google Scholar 

  4. Arreguín-Campos, M., Campos-Gonzalez, E., Guillén-Cervantes, A., Santos-Cruz, J., Mayén-Hernández, S.A., Zelaya-Angel, O., de la L. Olvera, M., Contreras-Puente, G., and de Moure-Flores, F., J. Laser Appl., 2018, vol. 30, no. 1, ID 012012. https://doi.org/10.2351/1.4986981

    Article  CAS  Google Scholar 

  5. Moiseev, N.V., Novikov, V.A., and Amosov, A.P., Vektor nauki TGU, 2019, no. 3, pp. 15–22. https://doi.org/10.18323/2073-5073-2019-3-15-22

    Article  Google Scholar 

  6. Patil, S.P., Patil, S.P., Puri, V.R., and Jadhav, L.D., AIP Conf. Proceed., 2013, vol. 1536, no. 1, pp. 1260−1261. https://doi.org/10.1063/1.4810699

    Article  CAS  Google Scholar 

  7. Morgan, P.E.D., Partin, D.E., Chamberland, B.L., and O’Keeffe, M., J. Solid State Chem., 1996, vol. 121, no. 1, pp. 33–37. https://doi.org/10.1006/jssc.1996.0005

    Article  CAS  Google Scholar 

  8. Afonasenko, T.N., Tsyrul’nikov, P.G., Gulyaeva, T.I., Leont’eva, N.N., Smirnova, N.S., Kochubei, D.I., Mironenko, O.O., Svintsitskii, D.A., Boronin, A.I., Kotolevich, Yu.S., Suprun, E.A., and Salanov, A.N., Kinet. Catal., 2013, vol. 54, no. 1, pp. 59−68. https://doi.org/10.1134/S0023158412060018

    Article  CAS  Google Scholar 

  9. Ostroushko, A.A. and Russkikh, O.V., Nanosistemy: Fizika, Khimiya, Matematika, 2017. vol. 8, no. 4, pp. 476–502. https://doi.org/10.17586/2220-8054-2017-8-4-476-502

    Article  CAS  Google Scholar 

  10. Ashika, S.A., Balamurugan, S., Sama Fathima, T.K., Mahitha Shri, K., and Palanisami, N., ECS J. Solid State Sci. Technol., 2021, vol. 10, no. 11, ID 113001. https://doi.org/10.1149/2162-8777/ac31ce

    Article  CAS  Google Scholar 

  11. Frenkel’, Ya. and Gubanov, A., Uspekhi Fiz. Nauk, 1940, vol. 24, no. 5, pp. 68–121. https://doi.org/10.3367/UFNr.0024.194005d.0068

    Article  Google Scholar 

  12. Bitra, H.C.R., Rao, A.V., Babu, K.S., and Rao, G.N., Mater. Chem. Phys., 2020, vol. 254, ID 123379. https://doi.org/10.1016/j.matchemphys.2020.123379

    Article  CAS  Google Scholar 

  13. Ivanova, V.V., Gagulin, V.V., Korchagina, S.K., Shevchuk, Y.A., and Bogatko, V.V., Inorg. Mater., 2003, vol. 39, no. 7, pp. 745–748. https://doi.org/10.1023/A:1024552228712..

    Article  CAS  Google Scholar 

  14. Datta, N. and Jeffery, J.W., Acta Crystallogr. B: Struct. Crystal. Crystal Chem., 1978, vol. 34, no. 1, pp. 22–26. https://doi.org/10.1107/S056774087800223X

    Article  Google Scholar 

  15. Phutanon, N., Pisitsak, P., Manuspiya, H., and Ummartyotin, S., J. Sci. Adv. Mater. Devices, 2018, vol. 3, no. 3, pp. 310–316. https://doi.org/10.1016/j.jsamd.2018.05.001

    Article  Google Scholar 

  16. Cheng, L., Jiang, T., and Zhang, J., Sci. Total Environ., 2021, vol. 776, ID 145840. https://doi.org/10.1016/j.scitotenv.2021.145840

    Article  CAS  PubMed  Google Scholar 

  17. Keerthana S., P., Yuvakkumar, R., Ravi, G., Pavithra, S., Thambidurai, M., Dang, C., and Velauthapillai, D., Environ. Res., 2021, vol. 200, ID 111528. https://doi.org/10.1016/j.envres.2021.111528

    Article  CAS  PubMed  Google Scholar 

  18. Truong, T.T., Pham, T.T., Truong, T.T.T., and Pham, T.D., Environ. Sci. Pollut. Res., 2020, vol. 29, no. 15, pp. 22576−22588. https://doi.org/10.1007/s11356-021-17106-0

    Article  CAS  Google Scholar 

  19. Hao, B., Guo, J., Zhang, L., and Ma, H., J. Alloys Compd., 2022, vol. 903, ID 163851. https://doi.org/10.1016/j.jallcom.2022.163851

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation, project no. 0092-2019-0003.

Author information

Authors and Affiliations

Authors

Contributions

A.V. Agafonov and A.V. Evdokimova developed the experimental technique; A.V. Evdokimova, A.I. Larionov synthesized samples and analyzed the literature; A.S. Kraev, N.A. Sirotkin measured the dielectric and photocatalytic characteristics of the obtained samples; A.V. Agafonov, A.V. Khlyustova formulated the concept of the article.

Corresponding author

Correspondence to A. V. Khlyustova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1488–1494, August, 2022 https://doi.org/10.31857/S0044461822110147

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimova, A.V., Larionov, A.I., Kraev, A.S. et al. Synthesis of CuO–Cu4O3 Composite in Combustion Reactions of Nitrate–Organic Precursors. Russ J Appl Chem 95, 1834–1839 (2022). https://doi.org/10.1134/S1070427222120114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222120114

Keywords:

Navigation